Votre recherche
Résultats 4 ressources
-
Abstract Worldwide, there has been an increase in the presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs). The objective of this study is to validate the use of in situ probes for the detection and management of cyanobacterial breakthrough in high and low-risk DWTPs. In situ phycocyanin YSI EXO2 probes were devised for remote control and data logging to monitor the cyanobacteria in raw, clarified, filtered, and treated water in three full-scale DWTPs. An additional probe was installed inside the sludge holding tank to measure the water quality of the surface of the sludge storage tank in a high-risk DWTP. Simultaneous grab samplings were carried out for taxonomic cell counts and toxin analysis. A total of 23, 9, and 4 field visits were conducted at the three DWTPs. Phycocyanin readings showed a 93-fold fluctuation within 24 h in the raw water of the high cyanobacterial risk plant, with higher phycocyanin levels during the afternoon period. These data provide new information on the limitations of weekly or daily grab sampling. Also, different moving averages for the phycocyanin probe readings can be used to improve the interpretation of phycocyanin signal trends. The in situ probe successfully detected high cyanobacterial biovolumes entering the clarification process in the high-risk plant. Grab sampling results revealed high cyanobacterial biovolumes in the sludge for both high and low-risk plants.
-
Agricultural activities can result in the contamination of surface runoff with pathogens, pesticides, and nutrients. These pollutants can enter surface water bodies in two ways: by direct discharge into surface waters or by infiltration and recharge into groundwater, followed by release to surface waters. Lack of financial resources makes risk assessment through analysis of drinking water pollutants challenging for drinking water suppliers. Inability to identify agricultural lands with a high-risk level and implement action measures might lead to public health issues. As a result, it is essential to identify hazards and conduct risk assessments even with limited data. This study proposes a risk assessment model for agricultural activities based on available data and integrating various types of knowledge, including expert and literature knowledge, to estimate the levels of hazard and risk that different agricultural activities could pose to the quality of withdrawal waters. To accomplish this, we built a Bayesian network with continuous and discrete inputs capturing raw water quality and land use upstream of drinking water intakes (DWIs). This probabilistic model integrates the DWI vulnerability, threat exposure, and threats from agricultural activities, including animal and crop production inventoried in drainage basins. The probabilistic dependencies between model nodes are established through a novel adaptation of a mixed aggregation method. The mixed aggregation method, a traditional approach used in ecological assessments following a deterministic framework, involves using fixed assumptions and parameters to estimate ecological outcomes in a specific case without considering inherent randomness and uncertainty within the system. After validation, this probabilistic model was used for four water intakes in a heavily urbanized watershed with agricultural activities in the south of Quebec, Canada. The findings imply that this methodology can assist stakeholders direct their efforts and investments on at-risk locations by identifying agricultural areas that can potentially pose a risk to DWIs.