Votre recherche
Résultats 32 ressources
-
Waterborne pathogens are heterogeneously distributed across various spatiotemporal scales in water resources, and representative sampling is therefore crucial for accurate risk assessment. Since regulatory monitoring of microbiological water quality is usually conducted at fixed time intervals, it can miss short-term fecal contamination episodes and underestimate underlying microbial risks. In the present paper, we developed a new automated sampling methodology based on near real-time measurement of a biochemical indicator of fecal pollution. Online monitoring of β-D-glucuronidase (GLUC) activity was used to trigger an automated sampler during fecal contamination events in a drinking water supply and at an urban beach. Significant increases in protozoan parasites, microbial source tracking markers and E. coli were measured during short-term (<24 h) fecal pollution episodes, emphasizing the intermittent nature of their occurrence in water. Synchronous triggering of the automated sampler with online GLUC activity measurements further revealed a tight association between the biochemical indicator and culturable E. coli. The proposed event sampling methodology is versatile and in addition to the two triggering modes validated here, others can be designed based on specific needs and local settings. In support to regulatory monitoring schemes, it should ultimately help gathering crucial data on waterborne pathogens more efficiently during episodic fecal pollution events.
-
Agricultural activities can result in the contamination of surface runoff with pathogens, pesticides, and nutrients. These pollutants can enter surface water bodies in two ways: by direct discharge into surface waters or by infiltration and recharge into groundwater, followed by release to surface waters. Lack of financial resources makes risk assessment through analysis of drinking water pollutants challenging for drinking water suppliers. Inability to identify agricultural lands with a high-risk level and implement action measures might lead to public health issues. As a result, it is essential to identify hazards and conduct risk assessments even with limited data. This study proposes a risk assessment model for agricultural activities based on available data and integrating various types of knowledge, including expert and literature knowledge, to estimate the levels of hazard and risk that different agricultural activities could pose to the quality of withdrawal waters. To accomplish this, we built a Bayesian network with continuous and discrete inputs capturing raw water quality and land use upstream of drinking water intakes (DWIs). This probabilistic model integrates the DWI vulnerability, threat exposure, and threats from agricultural activities, including animal and crop production inventoried in drainage basins. The probabilistic dependencies between model nodes are established through a novel adaptation of a mixed aggregation method. The mixed aggregation method, a traditional approach used in ecological assessments following a deterministic framework, involves using fixed assumptions and parameters to estimate ecological outcomes in a specific case without considering inherent randomness and uncertainty within the system. After validation, this probabilistic model was used for four water intakes in a heavily urbanized watershed with agricultural activities in the south of Quebec, Canada. The findings imply that this methodology can assist stakeholders direct their efforts and investments on at-risk locations by identifying agricultural areas that can potentially pose a risk to DWIs.
-
ABSTRACT Wastewater-based epidemiology has emerged as a promising tool to monitor pathogens in a population, particularly when clinical diagnostic capacities become overwhelmed. During the ongoing COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), several jurisdictions have tracked viral concentrations in wastewater to inform public health authorities. While some studies have also sequenced SARS-CoV-2 genomes from wastewater, there have been relatively few direct comparisons between viral genetic diversity in wastewater and matched clinical samples from the same region and time period. Here we report sequencing and inference of SARS-CoV-2 mutations and variant lineages (including variants of concern) in 936 wastewater samples and thousands of matched clinical sequences collected between March 2020 and July 2021 in the cities of Montreal, Quebec City, and Laval, representing almost half the population of the Canadian province of Quebec. We benchmarked our sequencing and variant-calling methods on known viral genome sequences to establish thresholds for inferring variants in wastewater with confidence. We found that variant frequency estimates in wastewater and clinical samples are correlated over time in each city, with similar dates of first detection. Across all variant lineages, wastewater detection is more concordant with targeted outbreak sequencing than with semi-random clinical swab sampling. Most variants were first observed in clinical and outbreak data due to higher sequencing rate. However, wastewater sequencing is highly efficient, detecting more variants for a given sampling effort. This shows the potential for wastewater sequencing to provide useful public health data, especially at places or times when sufficient clinical sampling is infrequent or infeasible.
-
Wastewater surveillance for SARS-CoV-2 RNA is a relatively recent adaptation of long-standing wastewater surveillance for infectious and other harmful agents. Individuals infected with COVID-19 were found to shed SARS-CoV-2 in their faeces. Researchers around the world confirmed that SARS-CoV-2 RNA fragments could be detected and quantified in community wastewater. Canadian academic researchers, largely as volunteer initiatives, reported proof-of-concept by April 2020. National collaboration was initially facilitated by the Canadian Water Network. Many public health officials were initially skeptical about actionable information being provided by wastewater surveillance even though experience has shown that public health surveillance for a pandemic has no single, perfect approach. Rather, different approaches provide different insights, each with its own strengths and limitations. Public health science must triangulate among different forms of evidence to maximize understanding of what is happening or may be expected. Well-conceived, resourced, and implemented wastewater-based platforms can provide a cost-effective approach to support other conventional lines of evidence. Sustaining wastewater monitoring platforms for future surveillance of other disease targets and health states is a challenge. Canada can benefit from taking lessons learned from the COVID-19 pandemic to develop forward-looking interpretive frameworks and capacity to implement, adapt, and expand such public health surveillance capabilities.