Votre recherche
Résultats 3 ressources
-
Abstract The present study analyses the impacts of past and future climate change on extreme weather events for southern parts of Canada from 1981 to 2100. A set of precipitation and temperature‐based indices were computed using the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) multi‐model ensemble projections at 8 km resolution over the 21st Century for two representative concentration pathway (RCP) scenarios: RCP4.5 and RCP8.5. The results show that this region is expected to experience stronger warming and a higher increase in precipitation extremes in future. Generally, projected changes in minimum temperature will be greater than changes in maximum temperature, as shown by respective indices. A decrease in frost days and an increase in warm nights will be expected. By 2100 there will be no cool nights and cool days. Daily minimum and maximum temperatures will increase by 12 and 7°C, respectively, under the RCP8.5 scenario, when compared with the reference period 1981–2000. The highest warming in minimum temperature and decrease in cool nights and days will occur in Ontario and Quebec provinces close to the Great Lakes and Hudson Bay. The highest warming in maximum temperature will occur in the southern parts of Alberta and Saskatchewan. Annual total precipitation is expected to increase by about 16% and the occurrence of heavy precipitation events by five days. The highest increase in annual total precipitation will occur in the northern parts of Ontario and Quebec and in western British Columbia.
-
Abstract Climate change is predicted to increase the frequency and intensity of floods in the province of Quebec, Canada. Therefore, in 2015, to better monitor the level of adaptation to flooding of Quebec residents living in or near a flood-prone area, the Quebec Observatory of Adaptation to Climate Change developed five indices of adaptation to flooding, according to the chronology of events. The present study was conducted 4 years later and is a follow-up to the 2015 one. Two independent samples of 1951 (2015) and 974 (2019) individuals completed a questionnaire on their adoption (or non-adoption) of flood adaptation behaviors, their perception of the mental and physical impacts of flooding, and their knowledge of the fact that they lived in a flood-prone area. The results of the study demonstrated the measurement invariance of the five indices across two different samples of people over time, ensuring that the differences (or absence of differences) observed in flood-related adaptive behaviors between 2015 and 2019 were real and not due to measurement errors. They also showed that, overall, Quebeckers’ flood-related adaptive behaviors have not changed considerably since 2015, with adaptation scores being similar in 2019 for four of the five flood indices. Moreover, the results indicated an increase in self-reported physical and mental health issues related to past flooding events, as well as a larger proportion of people having consulted a health professional because of these problems. Thus, this study provides a better understanding of flood adaptation in Quebec over the past 4 years and confirms that the five adaptive behavior indices developed in 2015 are appropriate tools for monitoring changes in flood adaptation in the province. Finally, our results showed that little has changed in Quebeckers’ adoption of adaptive behaviors, highlighting the need for awareness raising in order to limit the impacts that climate change will have on the population.
-
Abstract The consensus around the need for a shift in river management approaches to include more natural processes is steadily growing amongst scientists, practitioners, and governmental agencies. The freedom space for rivers concept promotes the delineation of a single space that integrates multiple fluvial dynamics such as floods, lateral migration, channel avulsions, and riparian wetlands connectivity. The objective of this research is to assess the validity of the hydrogeomorphological approach to delineate the freedom space for an extensive sampling of river reaches, covering 167 km, in contrasting watersheds in Quebec (Canada). Comparative analysis was conducted on the relative importance of erosion and flood processes on the freedom space delineation for various fluvial types. Semiautomated tools based on light detection and ranging (LiDAR) digital elevation models were also tested on an additional 274 km of watercourses to facilitate freedom space mapping over extensive zones and for highly dynamics environments such as alluvial fans. In the studied reaches, flood and erosion processes occur respectively, on average, in a space equivalent to 2.6 and 20.6 channel widths. In unconfined landscapes, flood processes represent an area up to almost four times the area of erosion processes expected in a 50‐year period. In partly confined and confined environments, erosion processes are more likely to exceed flooding zone, and therefore need to be integrated in the mapping. This study helps better determine the conditions for which the full methodology of freedom space mapping is required or where semiautomated methods can be used. It provides useful guidelines for the implementation of the freedom space approach.