Votre recherche
Résultats 9 ressources
-
Abstract The present study analyses the impacts of past and future climate change on extreme weather events for southern parts of Canada from 1981 to 2100. A set of precipitation and temperature‐based indices were computed using the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) multi‐model ensemble projections at 8 km resolution over the 21st Century for two representative concentration pathway (RCP) scenarios: RCP4.5 and RCP8.5. The results show that this region is expected to experience stronger warming and a higher increase in precipitation extremes in future. Generally, projected changes in minimum temperature will be greater than changes in maximum temperature, as shown by respective indices. A decrease in frost days and an increase in warm nights will be expected. By 2100 there will be no cool nights and cool days. Daily minimum and maximum temperatures will increase by 12 and 7°C, respectively, under the RCP8.5 scenario, when compared with the reference period 1981–2000. The highest warming in minimum temperature and decrease in cool nights and days will occur in Ontario and Quebec provinces close to the Great Lakes and Hudson Bay. The highest warming in maximum temperature will occur in the southern parts of Alberta and Saskatchewan. Annual total precipitation is expected to increase by about 16% and the occurrence of heavy precipitation events by five days. The highest increase in annual total precipitation will occur in the northern parts of Ontario and Quebec and in western British Columbia.
-
There is currently much discussion as to whether probabilistic (top–down) or possibilistic (bottom–up) approaches are the most appropriate to estimate potential future climate impacts. In a context of deep uncertainty, such as future climate, bottom-up approaches aimed at assessing the sensitivity and vulnerability of systems to changes in climate variables have been gaining ground. A refined framework is proposed here (in terms of coherence, structure, uncertainty, and results analysis) that adopts the scenario–neutral method of the bottom–up approach, but also draws on some elements of the top–down approach. What better guides the task of assessing the potential hydroclimatological impacts of changing climatic conditions in terms of the sensitivity of the systems, differential analysis of climatic stressors, paths of change, and categorized response of the scenarios: past, changing, compensatory, and critical condition. The results revealed a regional behavior (of hydroclimatology, annual water balances, and snow) and a differential behavior (of low flows). We find, among others, the plausible scenario in which increases in temperature and precipitation would generate the same current mean annual flows, with a reduction of half of the snow, a decrease in low flows (significant, but differentiated between basins), and a generalized increase in dry events.
-
This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affected by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. These results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.
-
En marge de la Cinquième Plateforme régionale pour la Réduction des risques de catastrophes des Amériques (PRA), le gouvernement du Canada a approché l’Institut des sciences de l’environnement(ISE) de l’Université du Québec à Montréal(UQAM) afin d’organiser un forum public. Les échanges de ce dernier devaient servir à alimenter les discussions de la PRA. Au total, 21 experts ont discuté avec une centaine de participants lors de panels organisés à l’UQAM sous les thèmes de la santé, de la sécurité civile et de l’aménagement du territoire. Plusieurs thèmes transversaux ont aussi émergé tout au long du forum. Il importe de pérenniser le rôle de la recherche et d’améliorer les capacités de formation technique et universitaire afin de former des spécialistes en mesure d’appréhender la complexité de la gestion du risque dans un contexte de changements environnementaux et climatiques. Ceci est également essentiel pour l’identification des facteurs de risque (multisources ou multidimensionnels), pour tirer des leçons apprises des événements majeurs passés et récents, et pour développer ou mettre à jour la connaissance sur les tendances en cours et à venir des aléas météorologiques, ainsi que des facteurs de vulnérabilité et d’exposition. Tous les panels ont discuté de l’importance de favoriser le décloisonnement intra/interorganisationnel pour promouvoir la transsectorialité et les retours d’expériences systématiques. Pour ce faire, il faut s’inspirer des modèles internationaux, notamment du système d’alertes hydrométéorologiques présenté par Météo-France. Celui-ci inclut une vigilance météorologique qui cible des populations et des autorités publiques, et les informe des comportements et des règles à suivre lors d’alertes plus problématiques (vigilance aux stades orange et rouge). Finalement, l’amélioration de la communication et le libre accès à l’information sont des éléments essentiels pour protéger les individus et développer une société plus résiliente.
-
Snowmelt dominated regions are receiving increasing attention due to their noticeably rapid response to ongoing climate change, which raises concerns about the altered hydrological risks under climate change scenarios. This study aims to assess the climate change impacts on hydrology over two contrasted catchments in southern Québec: Acadie River and Montmorency River catchments. These river catchments represent two predominant landscapes of the St. Lawrence River watershed; an intensive farming landscape in the south shore lowlands and the forested landscape on the Canadian Shield on the north shore, respectively. In this study, a physically based hydrological model has been developed using the Cold Regions Hydrological Model (CRHM) for both of the catchments. The hydrological model outputs showed that we were able to simulate snow surveys and discharge measurements with a reasonable accuracy for both catchments. The acceptable performance of the model along with the strong physical basis of structure suggested that this model could be used for climate change sensitivity simulations. Based on the climate scenarios reviewed, a temperature increase up to 8°C and an increase in total precipitation up to 20% were analysed for both of the catchments. Both catchments were found to be sensitive to climate change, however the degree of sensitivity was found to be catchment specific. Snow processes in the Acadie River catchment were simulated to be more sensitive to warming than in the Montmorency River catchment. In case of 2°C warming, reduction in peak SWE was not be able to be compensated even by increased precipitation scenario. Given that, the Acadie River has already a mixed flow regime, even if 2°C warming is combined with an increase in precipitation, pluvial regime kept becoming more dominant, resulting in higher peaks of rain events. On the other hand, even 3°C of warming did not modify the flow regime of the Montmorency River. While there is shift towards earlier peak spring flows in both catchments, the shift was found to be more pronounced in the Acadie River. An earlier occurrence of snowmelt floods and an overall increase in winter streamflow during winter have been simulated for both catchments, which calls for renewed assessments of existing water supply and flood risk management strategies.
-
Abstract The objective of this study is to compare the spatiotemporal variability of seasonal daily mean flows measured in 17 watersheds, grouped into three homogeneous hydroclimatic regions, during the period 1930–2023 in southern Quebec. With regard to spatial variability, unlike extreme daily flows, seasonal daily mean flows are very poorly correlated with physiographic factors and land use and land cover. In fall, they are not correlated with any physiographic or climatic factor. In winter, they are positively correlated with the rainfall and winter daily mean maximum temperatures. In spring, they are strongly correlated positively with the snowfall but negatively with the spring daily mean maximum temperatures. However, in summer, they are better correlated with forest area and, to a lesser extent, with the rainfall. As for their temporal variability, the application of six different statistical tests revealed a general increase in daily mean flows in winter due to early snowmelt and increased rainfall in fall. In summer, flows decreased significantly in the snowiest hydroclimatic region on the south shore due to the decrease in the snowfall. In spring, no significant change in flows was globally observed in the three hydroclimatic regions despite the decrease in the snowfall due to the increase in the rainfall. In fall, flows increased significantly south of 47°N on both shores due to the increase in the rainfall. This study demonstrates that, unlike extreme flows, the temporal variability of seasonal daily average flows is exclusively influenced by climatic variables in southern Quebec. Due to this influence, seasonal daily mean flows thus appear to be the best indicator for monitoring the impacts of changes in precipitation regimes and seasonal temperatures on river flows in southern Quebec.