Votre recherche
Résultats 179 ressources
-
Reduced snow storage has been associated with lower river low flows in mountainous catchments, exacerbating summer hydrological droughts. However, the impacts of changing snow storage on summer low flows in low-elevation, snow-affected catchments has not yet been investigated. To address this knowledge gap, the dominant hydroclimate predictors of summer low flows were first identified through correlation analysis in 12 tributary catchments of the St. Lawrence River in the Canadian province of Quebec. The correlation results show that summer low flow is most sensitive to summer rainfall, while maximum snow water equivalent (SWE) is the dominant winter preconditioning factor of low flows, particularly at the end of summer. The multivariate sensitivity of summer low flow to hydroclimate predictors was then quantified by multilevel regression analysis, considering also the effect of catchment biophysical attributes. Accumulated rainfall since snow cover disappearance was found to be the prime control on summer low flow, as expected for the humid climate of Quebec. Maximum SWE had a secondary but significant positive influence on low flow, sometimes on the same order as the negative effect of evapotranspiration losses. As a whole, our results show that in these low elevation catchments, thicker winter snowpacks that last longer and melt slower in the spring are conducive to higher low flows in the following summer. More rugged and forested catchments with coarser soils were found to have higher summer low flows than flatter agricultural catchments with compacted clayed soils. This emphasizes the role of soils and geology on infiltration, aquifer recharge and related river baseflow in summer. Further climate warming and snowpack depletion could reduce future summer low flow, exacerbating hydrological droughts and impacting ecosystems integrity and ecological services.
-
This study examines the hydrological sensitivity of an agroforested catchment to changes in temperature and precipitation. A physically based hydrological model was created using the Cold Regions Hydrological Modelling platform to simulate the hydrological processes over 23 years in the Acadie River Catchment in southern Quebec. The observed air temperature and precipitation were perturbed linearly based on existing climate change projections, with warming of up to 8 °C and an increase in total precipitation up to 20%. The results show that warming causes a decrease in blowing snow transport and sublimation losses from blowing snow, canopy-intercepted snowfall and the snowpack. Decreasing blowing snow transport leads to reduced spatial variability in peak snow water equivalent (SWE) and a more synchronized snow cover depletion across the catchment. A 20% increase in precipitation is not sufficient to counteract the decline in annual peak SWE caused by a 1 °C warming. On the other hand, peak spring streamflow increases by 7% and occurs 20 days earlier with a 1 °C warming and a 20% increase in precipitation. However, when warming exceeds 1.5 °C, the catchment becomes more rainfall dominated and the peak flow and its timing follows the rainfall rather than snowmelt regime. Results from this study can be used for sustainable farming development and planning in regions with hydroclimatic characteristics similar to the Acadie River Catchment, where climate change may have a significant impact on the dominating hydrological processes.
-
We compared the spatiotemporal variability of temperatures and precipitation with that of the magnitude and timing of maximum daily spring flows in the geographically adjacent L’Assomption River (agricultural) and Matawin River (forested) watersheds during the period from 1932 to 2013. With regard to spatial variability, fall, winter, and spring temperatures as well as total precipitation are higher in the agricultural watershed than in the forested one. The magnitude of maximum daily spring flows is also higher in the first watershed as compared with the second, owing to substantial runoff, given that the amount of snow that gives rise to these flows is not significantly different in the two watersheds. These flows occur early in the season in the agricultural watershed because of the relatively high temperatures. With regard to temporal variability, minimum temperatures increased over time in both watersheds. Maximum temperatures in the fall only increased in the agricultural watershed. The amount of spring rain increased over time in both watersheds, whereas total precipitation increased significantly in the agricultural watershed only. However, the amount of snow decreased in the forested watershed. The magnitude of maximum daily spring flows increased over time in the forested watershed.
-
Peatlands occupy around 13% of the land cover of Canada, and thus play a key role in the water balance at high latitudes. They are well known for having substantial water loss due to evapotranspiration. Since measurements of evapotranspiration are scarce over these environments, hydrologists generally rely on models of varying complexity to evaluate these water exchanges in the global watershed balance. This study quantifies the water budget of a small boreal peatland-dominated watershed. We assess the performance of three evapotranspiration models in comparison with in situ observations and the impact of using these models in the hydrological modeling of the watershed. The study site (~1-km2) is located in the Eastern James Bay lowlands, Quebec, Canada. During summer 2012, an eddy flux tower measured evapotranspiration continuously, while a trapezoidal flume monitored streamflow at the watershed outlet. We estimated evapotranspiration with a combinational model (Penman), a radiation-based model (Priestle...
-
This paper presents the extension of the monolayer snow model of a semi-distributed hydrological model (HYDROTEL) to a multilayer model that considers snow to be a combination of ice and air, while accounting for freezing rain. For two stations in Yukon and one station in northern Quebec, Canada, the multilayer model achieves high performances during calibration periods yet similar to the those of the monolayer model, with KGEs of up to 0.9. However, it increases the KGE values by up to 0.2 during the validation periods. The multilayer model provides more accurate estimations of maximum SWE and total spring snowmelt dates. This is due to its increased sensitivity to thermal atmospheric conditions. Although the multilayer model improves the estimation of snow heights overall, it exhibits excessive snow densities during spring snowmelt. Future research should aim to refine the representation of snow densities to enhance the accuracy of the multilayer model. Nevertheless, this model has the potential to improve the simulation of spring snowmelt, addressing a common limitation of the monolayer model.
-
Abstract Low flow conditions are governed by short-to-medium term weather conditions or long term climate conditions. This prompts the question: given climate scenarios, is it possible to assess future extreme low flow conditions from climate data indices (CDIs)? Or should we rely on the conventional approach of using outputs of climate models as inputs to a hydrological model? Several CDIs were computed using 42 climate scenarios over the years 1961–2100 for two watersheds located in Quebec, Canada. The relationship between the CDIs and hydrological data indices (HDIs; 7- and 30-day low flows for two hydrological seasons) were examined through correlation analysis to identify the indices governing low flows. Results of the Mann-Kendall test, with a modification for autocorrelated data, clearly identified trends. A partial correlation analysis allowed attributing the observed trends in HDIs to trends in specific CDIs. Furthermore, results showed that, even during the spatial validation process, the methodological framework was able to assess trends in low flow series from: (i) trends in the effective drought index (EDI) computed from rainfall plus snowmelt minus PET amounts over ten to twelve months of the hydrological snow cover season or (ii) the cumulative difference between rainfall and potential evapotranspiration over five months of the snow free season. For 80% of the climate scenarios, trends in HDIs were successfully attributed to trends in CDIs. Overall, this paper introduces an efficient methodological framework to assess future trends in low flows given climate scenarios. The outcome may prove useful to municipalities concerned with source water management under changing climate conditions.
-
The water content of wetlands represents a key driver of their hydrological services and it is highly dependent on short- and long-term weather conditions, which will change, to some extent, under evolving climate conditions. The impact on stream flows of this critical dynamic component of wetlands remains poorly studied. While hydrodynamic modelling provide a framework to describe the functioning of individual wetland, hydrological modelling offers the opportunity to assess their services at the watershed scale with respect to their type (i.e., isolated or riparian). This study uses a novel approach combining hydrological modelling and limited field monitoring, to explore the effectiveness of wetlands under changing climate conditions. To achieve this, two isolated wetlands and two riparian wetlands, located in the Becancour River watershed within the St Lawrence Lowlands (Quebec, Canada), were monitored using piezometers and stable water isotopes (δD – δ18O) between October 2013 and October 2014. For the watershed hydrology component of this study, reference (1986–2015) and future meteorological data (2041–2070) were used as inputs to the PHYSITEL/HYDROTEL modelling platform. Results obtained from in-situ data illustrate singular hydrological dynamics for each typology of wetlands (i.e., isolated and riparian) and support the hydrological modelling approach used in this study. Meanwhile, simulation results indicate that climate change could affect differently the hydrological dynamics of wetlands and associated services (e.g., storage and slow release of water), including their seasonal contribution (i.e., flood mitigation and low flow support) according to each wetland typology. The methodological framework proposed in this paper meets the requirements of a functional tool capable of anticipating hydrological changes in wetlands at both the land management scale and the watershed management scale. Accordingly, this framework represents a starting point towards the design of effective wetland conservation and/or restoration programs.
-
Wetlands play a significant role on the hydrological cycle, reducing flood peaks through water storage functions and sustaining low flows through slow water release ability. However, their impacts on water resources availability and flood control are mainly driven by wetland type (e.g., isolated wetland –IW- and riparian wetland –RW-) and location within a watershed. Consequently, assessing the qualitative and quantitative impact of wetlands on hydrological regimes has become a relevant issue for scientists as well as stakeholders and decision-makers. In this study, the distributed hydrological model, HYDROTEL, was used to investigate the role and impact of the geographic distribution of isolated and riparian wetlands on stream flows of the Becancour River watershed of the St Lawrence Lowlands, Quebec, Canada. The model was set up and calibrated using available datasets (i.e., DEM, soil, wetland distribution, climate, land cover, and hydrometeorological data for the 1969-2010 period). Different Wetland Theoretical Location Tests (WTLT) were simulated. Results were used to determine whether stream flow parameters, related to peak flows and low flows, were related to: (i) geographic location of wetlands, (ii) typology of wetlands, and (iii) seasonality. The contribution of a particular wetland was assessed using intrinsic characteristics (e.g., surface area, typology) and extrinsic factors (e.g., location in the watershed landscape and seasonality). Through these investigations, the results suggest, to some extent, that both IWs and RWs impact landscape hydrology. The more IWs are located in the upper part of the watershed, the greater their effect on both on high flow damping and low flow support seems to be. The more RWs are connected to a main stream, the greater their effect is. Our modelling results indicate that local landscape conditions may influence the wetland effect; promoting or limiting their efficiency, and thus their impacts on stream flows depend on a combined effect of wetland and landscape attributes.
-
Mathematical modelling is a well-accepted framework to evaluate the effects of wetlands on stream flow and watershed hydrology in general. Although the integration of wetland modules into a distributed hydrological model represents a cost-effective way to make this assessment, the added value brought by landscape-specific modules to a model's ability to replicate basic hydrograph characteristics remains unclear. The objectives of this paper were to: (i) present the adaptation of PHYSITEL (a GIS) to parameterize isolated and riparian wetlands; (ii) describe the integration of specific isolated wetland and riparian wetland modules into HYDROTEL, a distributed hydrological model; and (iii) evaluate the performance of the updated modelling platform with respect to the capacity of replicating various hydrograph characteristics. To achieve this, two sets of simulations were performed (with and without wetland modules) and the added-value was assessed at three river segments of the Becancour River watershed, Quebec, Canada, using six general goodness-of-fit indicators (GOFIs) and fourteen water flow criteria (WFC). A sensitivity analysis of the wetland module parameters was performed to characterize their impact on stream flows of the modelled watershed. Results of this study indicate that: (i) integration of specific wetland modules can slightly increase the capacity of HYDROTEL to replicate basic hydrograph characteristics and (ii) the updated modelling platform allows for the explicit assessment of the impact of wetlands (e.g., typology, location) on watershed hydrology.
-
Agricultural activities can result in the contamination of surface runoff with pathogens, pesticides, and nutrients. These pollutants can enter surface water bodies in two ways: by direct discharge into surface waters or by infiltration and recharge into groundwater, followed by release to surface waters. Lack of financial resources makes risk assessment through analysis of drinking water pollutants challenging for drinking water suppliers. Inability to identify agricultural lands with a high-risk level and implement action measures might lead to public health issues. As a result, it is essential to identify hazards and conduct risk assessments even with limited data. This study proposes a risk assessment model for agricultural activities based on available data and integrating various types of knowledge, including expert and literature knowledge, to estimate the levels of hazard and risk that different agricultural activities could pose to the quality of withdrawal waters. To accomplish this, we built a Bayesian network with continuous and discrete inputs capturing raw water quality and land use upstream of drinking water intakes (DWIs). This probabilistic model integrates the DWI vulnerability, threat exposure, and threats from agricultural activities, including animal and crop production inventoried in drainage basins. The probabilistic dependencies between model nodes are established through a novel adaptation of a mixed aggregation method. The mixed aggregation method, a traditional approach used in ecological assessments following a deterministic framework, involves using fixed assumptions and parameters to estimate ecological outcomes in a specific case without considering inherent randomness and uncertainty within the system. After validation, this probabilistic model was used for four water intakes in a heavily urbanized watershed with agricultural activities in the south of Quebec, Canada. The findings imply that this methodology can assist stakeholders direct their efforts and investments on at-risk locations by identifying agricultural areas that can potentially pose a risk to DWIs.
-
Abstract This study compares the impacts of climate, agriculture and wetlands on the spatio-temporal variability of seasonal daily minimum flows during the period 1930–2019 in 17 watersheds of southern Quebec (Canada). In terms of spatial variability, correlation analysis revealed that seasonal daily minimum flows were mainly negatively correlated with the agricultural surface area in watersheds in spring, summer and fall. In winter, these flows were positively correlated with the wetland surface area and March temperatures but negatively correlated with snowfall. During all four seasons, spatial variability was characterized by higher daily minimum flow values on the north shore (smaller agricultural surface area and larger wetland surface area) than those on the south shore. As for temporal variability, the application of six tests of the long-term trend analysis showed that most agricultural watersheds are characterized by a significant increase in flows during the four seasons due to the reduction in agricultural area, thus favoring water infiltration, and increased rainfall in summer and fall. On the other hand, the reduction in the snowfall resulted in a reduction in summer daily minimum flows observed in several less agricultural watersheds.
-
Several statistical methods were used to analyze the spatio-temporal variability of daily minimum extreme flows (DMEF) in 17 watersheds—divided into three homogenous hydroclimatic regions of southern Quebec—during the transitional seasons (spring and fall), during the 1930–2019 period. Regarding spatial variability, there was a clear difference between the south and north shores of the St. Lawrence River, south of 47° N. DMEF were lower in the more agricultural watersheds on the south shore during transitional seasons compared to those on the north shore. A correlation analysis showed that this difference in flows was mainly due to more agricultural areas ((larger area (>20%) on the south than on the north shore (<5%)). An analysis of the long-term trend of these flows showed that the DMEF of south-shore rivers have increased significantly since the 1960s, during the fall (October to December), due to an increase in rainfall and a reduction in cultivated land, which increased the infiltration in the region. Although there was little difference between the two shores in the spring (April to June), we observed a decrease in minimum extreme flows in half (50%) of the south-shore rivers located north of 47° N.
-
Studies show associations between prenatal maternal stress (PNMS) and child autism, with little attention paid to PNMS and autism in young adulthood. The broad autism phenotype (BAP), encompassing sub-clinical levels of autism, includes aloof personality, pragmatic language impairment and rigid personality. It remains unclear whether different aspects of PNMS explain variance in different BAP domains in young adult offspring. We recruited women who were pregnant during, or within 3 months of, the 1998 Quebec ice storm crisis, and assessed three aspects of their stress (i.e., objective hardship, subjective distress and cognitive appraisal). At age 19, the young adult offspring (n = 33, 22F / 11M) completed a BAP self-report. Linear and logistic regressions were implemented to examine associations between PNMS and BAP traits. Up to 21.4% of the variance in BAP total score and in BAP three domains tended to be explained by at least one aspect of maternal stress, For example, 16.8% of the variance in aloof personality tended to be explained by maternal objective hardship; 15.1% of the variance in pragmatic language impairment tended to be explained by maternal subjective distress; 20.0% of the variance in rigid personality tended to be explained by maternal objective hardship and 14.3% by maternal cognitive appraisal. Given the small sample size, the results should be interpreted with caution. In conclusion, this small prospective study suggests that different aspects of maternal stress could have differential effects on different components of BAP traits in young adults.
-
Abstract Studies have shown that prenatal maternal stress (PNMS) affects brain structure and function in childhood. However, less research has examined whether PNMS effects on brain structure and function extend to young adulthood. We recruited women who were pregnant during or within 3 months following the 1998 Quebec ice storm, assessed their PNMS, and prospectively followed‐up their children. T1‐weighted magnetic resonance imaging (MRI) and resting‐state functional MRI were obtained from 19‐year‐old young adults with ( n = 39) and without ( n = 65) prenatal exposure to the ice storm. We examined between‐group differences in gray matter volume (GMV), surface area (SA), and cortical thickness (CT). We used the brain regions showing between‐group GMV differences as seeds to compare between‐group functional connectivity. Within the Ice Storm group, we examined (1) associations between PNMS and the atypical GMV, SA, CT, and functional connectivity, and (2) moderation by timing of exposure. Primarily, we found that, compared to Controls, the Ice Storm youth had larger GMV and higher functional connectivity of the anterior cingulate cortex, the precuneus, the left occipital pole, and the right hippocampus; they also had larger CT, but not SA, of the left occipital pole. Within the Ice Storm group, maternal subjective distress during preconception and mid‐to‐late pregnancy was associated with atypical left occipital pole CT. These results suggest the long‐lasting impact of disaster‐related PNMS on child brain structure and functional connectivity. Our study also indicates timing‐specific effects of the subjective aspect of PNMS on occipital thickness.
-
Background Given the important role that municipalities must play in adapting to climate change, it is more than ever essential to measure their progress in this area. However, measuring municipalities’ adaptation progress presents its share of difficulties especially when it comes to comparing (on similar dimensions and over time) the situation of different municipal entities and to linking adaptation impacts to local actions. Longitudinal studies with recurring indicators could capture changes occurring over time, but the development of such indicators requires great emphasis on methodological and psychometric aspects, such as measurement validity. Therefore, this study aimed to develop and validate an index of adaptation to heatwaves and flooding at the level of municipal urbanists and urban planners. Methods A sample of 139 officers working in urbanism and urban planning for municipal entities in the province of Quebec (Canada) completed an online questionnaire. Developed based on a literature review and consultation of representatives from the municipal sector, the questionnaire measured whether the respondent’s municipal entity did or did not adopt the behaviors that are recommended in the scientific and gray literature to adapt to heatwaves and flooding. Results Results of the various metrological analyses (indicator reliability analysis, first order confirmatory factor analysis, concurrent validity analysis, and nomological validity assessment analysis) confirmed the validity of the index developed to measure progress in climate change adaptation at the municipal level. The first dimension of the index corresponds to preliminary measures that inform and prepare stakeholders for action (i.e., groundwork adaptation initiatives), whereas the second refers to measures that aim to concretely reduce vulnerability to climate change, to improve the adaptive capacity or the resilience of human and natural systems (i.e., adaptation actions). Conclusion The results of a series of psychometric analyses showed that the index has good validity and could properly measure the adoption of actions to prepare for adaptation as well as adaptation actions per se. Municipal and government officials can therefore consider using it to monitor and evaluate adaptation efforts at the municipal level.
-
Summary Probable maximum snow accumulation (PMSA) is one of the key variables used to estimate the spring probable maximum flood (PMF). A robust methodology for evaluating the PMSA is imperative so the ensuing spring PMF is a reasonable estimation. This is of particular importance in times of climate change (CC) since it is known that solid precipitation in Nordic landscapes will in all likelihood change over the next century. In this paper, a PMSA methodology based on simulated data from regional climate models is developed. Moisture maximization represents the core concept of the proposed methodology; precipitable water being the key variable. Results of stationarity tests indicate that CC will affect the monthly maximum precipitable water and, thus, the ensuing ratio to maximize important snowfall events. Therefore, a non-stationary approach is used to describe the monthly maximum precipitable water. Outputs from three simulations produced by the Canadian Regional Climate Model were used to give first estimates of potential PMSA changes for southern Quebec, Canada. A sensitivity analysis of the computed PMSA was performed with respect to the number of time-steps used (so-called snowstorm duration) and the threshold for a snowstorm to be maximized or not. The developed methodology is robust and a powerful tool to estimate the relative change of the PMSA. Absolute results are in the same order of magnitude as those obtained with the traditional method and observed data; but are also found to depend strongly on the climate projection used and show spatial variability.
-
Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This paper presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Quebec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), three insect pests (codling moth (Cydia pomonella), plum curculio (Conotrachelus nenuphar) and apple maggot (Rhagoletis pomonella)) and two diseases (apple scab (Venturia inaequalis) and fire blight (Erwinia amylovora)). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period.
-
Wetlands play an important role in preventing extreme low flows in rivers and groundwater level drawdowns during drought periods. This hydrological function could become increasingly important under a warmer climate. Links between peatlands, aquifers, and rivers remain inadequately understood. The objective of this study was to evaluate the hydrologic functions of the Lanoraie peatland complex in southern Quebec, Canada, under different climate conditions. This peatland complex has developed in the beds of former fluvial channels during the final stages of the last deglaciation. The peatland covers a surface area of ~76 km2 and feeds five rivers. Numerical simulations were performed using a steady-state groundwater flow model. Results show that the peatland contributes on average to 77% of the mean annual river base flow. The peatland receives 52% of its water from the aquifer. Reduced recharge scenarios (−20 and −50% of current conditions) were used as a surrogate of climate change. With these scenarios, the simulated mean head decreases by 0.6 and 1.6 m in the sand. The mean river base flow decreases by 16 and 41% with the two scenarios. These results strongly underline the importance of aquifer-peatland-river interactions at the regional scale. They also point to the necessity of considering the entire hydrosystem in conservation initiatives.
-
Abstract The increased frequency of mild rain‐on‐snow (R.O.S.) events in cold regions associated with climate change is projected to affect snowpack structure and hydrological behaviour. The ice layers that form in a cold snowpack when R.O.S. events occur have been shown to influence flowthrough processes and liquid water retention, with consequences for winter floods, groundwater recharge, and water resources management. This study explores interconnections between meteorological conditions, ice layer formation, and lateral flows during R.O.S. events throughout the 2018–2019 winter in meridional Quebec, Canada. Automated hydro‐meteorological measurements, such as water availability for runoff, snow water equivalent, and snowpit observations, are used to compute water and energy balances, making it possible to characterize a snowpack's internal conditions and flowthrough regimes. For compatibility assessment, water and energy balances‐based flowthrough scenarios are then compared to different hydro‐meteorological variables', such as water table or streamlet water levels. The results show an association between highly variable meteorological conditions, frequent R.O.S. events, and ice layer formation. Lateral flows were mainly observed during the early stage of the ablation period. The hydrologically significant lateral flows observed in the study are associated with winter conditions that are predicted to become more frequent in a changing climate, stressing the need for further evaluation of their potential impact at the watershed scale.
-
Durant les mois de janvier et février 2019, trois embâcles ont forcé l’arrêt de la navigation commerciale vers le Port de Montréal. Ce mémoire présente les conditions météorologiques associées aux embâcles sur le fleuve Saint Laurent de l’hiver 2018-2019. Il explique que les embâcles se développent à la suite d’arrêts de glace dans le bief problématique du lac Saint-Pierre entre la courbe Louiseville et le bassin Yamachiche. Pour ce faire, l’étude considère la production de glace en amont jusqu’au lac Saint-Louis. Il explique pourquoi ce bief est si vulnérable à l’initiation d’embâcles en présentant les neuf concepts de vulnérabilité du lac Saint-Pierre. De plus, il propose quatorze recommandations concrètes pour améliorer la fiabilité de navigation hivernale en réduisant les risques d’embâcles. En considérant ces recommandations, différentes opportunités de télédétection et une interface utilisateur sont présentées. L’opportunité de télédétection introduit la possibilité d’usage d’images de RADARSAT Constellation Mission et de photographies par drone afin d’évaluer des éléments clés comme la progression du couvert de glace, la largeur effective du chenal, la concentration de glace en transit et la vitesse de la glace. L’interface est un prototype d’outil d’aide à la décision de source libre qui permet d’obtenir d’autres informations quantitatives sur les risques d’arrêts de glace et du même fait, d’embâcles de glace.