Votre recherche
Résultats 71 ressources
-
ABSTRACT Flood risk management (FRM) involves planning proactively for flooding in high‐risk areas to reduce its impacts on people and property. A key challenge for governments pursuing FRM is to pinpoint assets that are highly economically exposed and vulnerable to flood hazards in order to prioritize them in policy and planning. This paper presents a novel flood risk assessment, making use of a dataset that identifies the location, dwelling type, property characteristics, and potential economic losses of Canadian residential properties. The findings reveal that the average annual costs are $1.4B, but most of the risks are concentrated in high‐risk areas. Data gaps are uncovered that justify replication through local validation studies. The results provide a novel evidence base for specific reforms in Canada's approach to FRM, with a focus on insurance that improves both implementation and effectiveness.
-
Droughts are increasingly recognized as a significant global challenge, with severe impacts observed in Canada's Prairie provinces. While less frequent in Eastern Canada, prolonged precipitation deficits, particularly during summer, can lead to severe drought conditions. This study investigates the causes and consequences of droughts in New Brunswick (NB) by employing two drought indices: the Palmer Drought Severity Index (PDSI) and Standardized Evapotranspiration Deficit Index (SEDI)– at ten weather stations across NB from 1971 to 2020. Additionally, the Canadian Gridded Temperature and Precipitation Anomalies (CANGRD) dataset (1979–2014) was utilized to examine spatial and temporal drought variability and its alignment with station-based observations. Statistical analyses, including the Mann–Kendall test and Sen's slope estimator, were applied to assess trends in drought indices on annual and seasonal timescales using both station and gridded data. The results identified the most drought-vulnerable regions in NB and revealed significant spatial and temporal variability in drought severity over the 1971–2020 period. Trend analyses further highlighted the intensification of extreme drought events during specific years. Coastal areas in southern NB were found to be particularly susceptible to severe drought conditions compared to inland regions, consistent with observed declines in both the frequency of rainy days and daily precipitation amounts in these areas. These findings underscore the need for targeted drought mitigation strategies particularly in NB’s coastal zones, to address the region’s increasing vulnerability to extreme drought events.
-
Dans le contexte du réchauffement planétaire, la relation de Clausius Clapeyron (CC) est utilisée comme un indicateur de l’évolution des précipitations extrêmes. Parmi les théories proposées, nous utilisons dans notre recherche une relation exponentielle qui fait le lien entre l’évolution des centiles les plus extrêmes des précipitations et le changement de la température ΔT dans le climat actuel. Selon cette théorie, les précipitations augmentent au même rythme que la capacité de rétention d'humidité dans l’atmosphère, expliquée par la relation de CC, avec un taux de changement d'environ 7 % par degré Celsius pour des valeurs de température et de pression près de la surface. Ainsi, le présent travail vise à vérifier l’existence de liens physiquement plausibles dans la relation entre les précipitations extrêmes et la température de l’air pour la région du Bassin Versant de la Rivière des Outaouais (BVRO) sur la période 1981-2010, à l’aide des simulations du Modèle Régional Canadien du Climat (MRCC) (versions 5 et 6), développé au centre ESCER, et de deux produits de réanalyses du Centre Européen pour les prévisions météorologiques à moyen terme (CEPMMT) à différentes résolutions spatiales. En général, les précipitations quotidiennes suivent un taux de changement inférieur à celui de CC ; tandis que les précipitations horaires augmentent plus rapidement avec la température. Dans ce dernier cas, pour la simulation du MRCC5 à plus haute résolution spatiale, des taux de changement supérieurs à CC ont même été produits, jusqu’à 10,2 %/°C. Ce travail a également mis en évidence qu’au-delà du seuil de 20°C, la capacité de rétention d'humidité de l’atmosphère n’est pas le seul facteur déterminant pour générer des précipitations extrêmes, et que d’autres facteurs sont à considérer, comme la disponibilité de l'humidité au moment de l'événement de précipitation et la présence de mécanismes dynamiques qui favorisent les mouvements verticaux ascendants. Un comportement sous forme de crochet, qui décrit une augmentation des précipitations jusqu'à un seuil de température, est observé dans la saison estivale avec le MRCC5, mais il a disparu avec les simulations du MRCC6, ce qui pourrait être une conséquence d’avoir seulement une année de simulation disponible ou bien d’une conséquence de la très haute résolution du modèle sur les intervalles de température et sur les effets locaux. En conclusion, l'applicabilité de la relation de CC ne doit pas être généralisée quant à l’étude des précipitations extrêmes, il est également important de considérer l'échelle temporelle, la résolution du modèle utilisé et la saison de l'année. L’évolution de cette relation de CC devrait être évaluée avec des simulations à très haute résolution spatiale (version en développement au centre ESCER), et pour d’autres zones climatiques, sachant que les intervalles de températures et les effets locaux exercent un rôle majeur sur les occurrences et les intensités des fortes précipitations. Ces éléments sont essentiels à intégrer dans le contexte des changements climatiques, en raison des conséquences associées aux fortes précipitations, notamment sur l’occurrence des inondations. _____________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Clausius-Clapeyron, évènements extrêmes, aléas météorologiques, risques d’inondation, changements climatiques
-
While there is a large body of literature focusing on global-level flood hazard management, including preparedness, response, and recovery, there is a lack of research examining the patterns and dynamics of community-level flood management with a focus on local engagement and institutional mechanism. The present research explores how local communities mobilize themselves, both individually and institutionally, to respond to emerging flood-related situations and recover from their impacts. A case study approach was applied to investigate two towns in the Red River Valley of Manitoba, Canada: St. Adolphe and Ste. Agathe. Data collection consisted of in-depth interviews and oral histories provided by local residents, in addition to analysis of secondary official records and documents. The findings revealed that local community-level flood preparedness, response, and recovery in the Province of Manitoba are primarily designed, governed, managed, and evaluated by the provincial government authorities using a top-down approach. The non-participatory nature of this approach makes community members reluctant to engage with precautionary and response measures, which in turn results in undesired losses and damages. It is recommended that the Government of Manitoba develop and implement a collaborative and participatory community-level flood management approach that draws upon the accumulated experiential knowledge of local stakeholders and institutions.
-
AbstractFloods are the most frequent natural disaster in Canada, putting Canadian lives and property at risk. Projected variations in precipitation and temperature are expected to further intensify...
-
Abstract The present study analyses the impacts of past and future climate change on extreme weather events for southern parts of Canada from 1981 to 2100. A set of precipitation and temperature‐based indices were computed using the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) multi‐model ensemble projections at 8 km resolution over the 21st Century for two representative concentration pathway (RCP) scenarios: RCP4.5 and RCP8.5. The results show that this region is expected to experience stronger warming and a higher increase in precipitation extremes in future. Generally, projected changes in minimum temperature will be greater than changes in maximum temperature, as shown by respective indices. A decrease in frost days and an increase in warm nights will be expected. By 2100 there will be no cool nights and cool days. Daily minimum and maximum temperatures will increase by 12 and 7°C, respectively, under the RCP8.5 scenario, when compared with the reference period 1981–2000. The highest warming in minimum temperature and decrease in cool nights and days will occur in Ontario and Quebec provinces close to the Great Lakes and Hudson Bay. The highest warming in maximum temperature will occur in the southern parts of Alberta and Saskatchewan. Annual total precipitation is expected to increase by about 16% and the occurrence of heavy precipitation events by five days. The highest increase in annual total precipitation will occur in the northern parts of Ontario and Quebec and in western British Columbia.
-
Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.
-
Abstract Floods are the most frequently occurring natural hazard in Canada. An in‐depth understanding of flood seasonality and its drivers at a national scale is essential. Here, a circular, statistics‐based approach is implemented to understand the seasonality of annual‐maximum floods (streamflow) and to identify their responsible drivers across Canada. Nearly 80% and 70% of flood events were found to occur during spring and summer in eastern and western watersheds across Canada, respectively. Flooding in the eastern and western watersheds was primarily driven by snowmelt and extreme precipitation, respectively. This observation suggests that increases in temperature have led to early spring snowmelt‐induced floods throughout eastern Canada. Our results indicate that precipitation (snowmelt) variability can exert large controls on the magnitude of flood peaks in western (eastern) watersheds in Canada. Further, the nonstationarity of flood peaks is modelled to account for impact of the dynamic behaviour of the identified flood drivers on extreme‐flood magnitude by using a cluster of 74 generalized additive models for location scale and shape models, which can capture both the linear and nonlinear characteristics of flood‐peak changes and can model its dependence on external covariates. Using nonstationary frequency analysis, we find that increasing precipitation and snowmelt magnitudes directly resulted in a significant increase in 50‐year streamflow. Our results highlight an east–west asymmetry in flood seasonality, indicating the existence of a climate signal in flood observations. The understating of flood seasonality and flood responses under the dynamic characteristics of precipitation and snowmelt extremes may facilitate the predictability of such events, which can aid in predicting and managing their impacts.
-
Abstract Study region Canada. Study focus Given the effects of climate change on extreme precipitation, updated Intensity-Duration-Frequency (IDF) relationships have been adopted across Canada. Since the IDFs’ generation is based on the assumption of stationarity, the rainfall statistics information may be unreliable. Recent research is attempting to develop a new methodology to integrate non-stationarity and climate change into IDFs updating process. Up to now, there is no comprehensive evaluation of the IDFs updating procedure at different locations. In this study, we analyzed the combined effect of non-stationarity and climate change on future IDFs at six selected gauging stations across Canada. New hydrological insights for the region A comparison of the updated future IDFs with historical IDFs indicates an intensification of extreme events for all study areas, increasing hazard to them. Sites located in the Northeast coastal region will be the most affected in the future by the extreme precipitation. In addition, there is a clear indication that rare events (100-year return period) will become more frequent (in some cases increase up to 443 % of the water infrastructure risk of failure has been observed). We argue that the above findings (i) offer a new overview of future extreme precipitation across Canada, and (ii) should be considered by the stakeholders with respect to climate change adaptation decisions.
-
Droughts have extensive consequences, affecting the natural environment, water quality, public health, and exacerbating economic losses. Precise drought forecasting is essential for promoting sustainable development and mitigating risks, especially given the frequent drought occurrences in recent decades. This study introduces the Improved Outlier Robust Extreme Learning Machine (IORELM) for forecasting drought using the Multivariate Standardized Drought Index (MSDI). For this purpose, four observation stations across British Columbia, Canada, were selected. Precipitation and soil moisture data with one up to six lags are utilized as inputs, resulting in 12 variables for the model. An exhaustive analysis of all potential input combinations is conducted using IORELM to identify the best one. The study outcomes emphasize the importance of incorporating precipitation and soil moisture data for accurate drought prediction. IORELM shows promising results in drought classification, and the best input combination was found for each station based on its results. While high Area Under Curve (AUC) values across stations, a Precision/Recall trade-off indicates variable prediction tendencies. Moreover, the F1-score is moderate, meaning the balance between Precision, Recall, and Classification Accuracy (CA) is notably high at specific stations. The results show that stations near the ocean, like Pitt Meadows, have higher predictability up to 10% in AUC and CA compared to inland stations, such as Langley, which exhibit lower values. These highlight geographic influence on model performance.
-
ABSTRACT Two composite sedimentary sequences sampled in the ice‐proximal (12CS) and ice‐distal (02CS) areas of Coronation Fjord (Baffin Island, Nunavut, Canada) were investigated in order to reconstruct the effect of climate variability on 600 years of changes in sediment transfer from the eastern Penny Ice Cap (PIC). Detrital proxies, and physical and sedimentological analyses revealed that glacial meltwater discharges led to frequent rapidly deposited layers (RDLs) in ice‐proximal settings. RDLs in ice‐distal settings involved the sudden release of a large quantity of sediment‐laden water during floods probably originating from adjacent fjords with large sandur deltas. Laminated sediments with ice‐rafted debris throughout the Little Ice Age interval in the ice‐proximal environment suggest that colder conditions promoted glacier growth, leading to successive episodes of turbid hyperpycnal meltwater plumes and iceberg calving in Coronation Fjord. Since 1850 ce , the accelerated Coronation retreat in response to modern warming has led to increased sedimentation rates, abrupt mineralogical and grain size proxy variations and more frequent RDLs. Similar trends between the detrital proxies of the ice‐proximal core and Atlantic Multidecadal Oscillation record and Arctic surface air temperature suggest high connectivity between atmospheric and sea surface temperature variations and PIC dynamics over the last 600 years.
-
Individual tree recruitment is an important element needed to understand stand dynamics, as it influences both stand composition and productivity. Forest growth simulators usually include recruitment models. The quality of recruitment predictions can have long-term impacts on estimations of forest growth, ecosystem health and the commercial utility of managed forests. The main objective of this study was to develop a recruitment model for commercial-size trees (i.e., trees with a diameter at breast height > 9 cm) of 10 species groups using different dendrometric and environmental variables. The resulting model will be included in a growth simulator used to support forest management planning. We hypothesized that accounting for sapling density as a covariate would improve the recruitment model's predictive performance. Using empirical data from periodically measured permanent sample plots (1982–2019) located throughout the managed mixed hardwood forests of Quebec, we constructed models with and without sapling-related covariates and compared them on the basis of cross-validation model performance statistics. Our results show that including sapling density significantly improved model performance. From this, we conclude that adding sapling density as a covariate can significantly improve a recruitment model's predictive power for eastern mixed hardwood forests.