Votre recherche
Résultats 40 ressources
- 
            
        A new method for sensitivity analysis of water depths is presented based on a two-dimensional hydraulic model as a convenient and cost-effective alternative to Monte Carlo simulations. The method involves perturbation of the probability distribution of input variables. A relative sensitivity index is calculated for each variable, using the Gauss quadrature sampling, thus limiting the number of runs of the hydraulic model. The variable-related highest variation of the expected water depths is considered to be the most influential. The proposed method proved particularly efficient, requiring less information to describe model inputs and fewer model executions to calculate the sensitivity index. It was tested over a 45 km long reach of the Richelieu River, Canada. A 2D hydraulic model was used to solve the shallow water equations (SWE). Three input variables were considered: Flow rate, Manning’s coefficient, and topography of a shoal within the considered reach. Four flow scenarios were simulated with discharge rates of 759, 824, 936, and 1113 m 3 / s . The results show that the predicted water depths were most sensitive to the topography of the shoal, whereas the sensitivity indices of Manning’s coefficient and the flow rate were comparatively lower. These results are important for making better hydraulic models, taking into account the sensitivity analysis. 
- 
            
        Floods are the most common natural hazard worldwide. GARI is a flood risk management and analysis tool that is being developed by the Environmental and Nordic Remote Sensing Group (TENOR) of INRS in Quebec City (Canada). Beyond mapping the flooded areas and water levels, GARI allows for the estimation, analysis and visualization of flood risks for individuals, residential buildings, and population. Information can therefore be used during the different phases of flood risk management. In the operational phase, GARI can use satellite radar images to map in near real-time the flooded areas and water levels. It uses an innovative approach that combines Radarsat-2 and hydraulic data, specifically flood return period data. Information from the GARI enable municipalities and individuals to anticipate the impacts of a flood in a given area, to mitigate these impacts, to prepare, and to better coordinate their actions during a flood. 
- 
            
        The Penman-Monteith reference evapotranspiration (ET0) formulation was forced with humidity, radiation, and wind speed (HRW) fields simulated by four reanalyses in order to simulate hydrologic processes over six mid-sized nivo-pluvial watersheds in southern Quebec, Canada. The resulting simulated hydrologic response is comparable to an empirical ET0 formulation based exclusively on air temperature. However, Penman-Montheith provides a sounder representation of the existing relations between evapotranspiration fluctuations and climate drivers. Correcting HRW fields significantly improves the hydrologic bias over the pluvial period (June to November). The latter did not translate into an increase of the hydrologic performance according to the Kling-Gupta Efficiency (KGE) metric. The suggested approach allows for the implementation of physically-based ET0 formulations where HRW observations are insufficient for the calibration and validation of hydrologic models and a potential reinforcement of the confidence affecting the projection of low flow regimes and water availability. 
- 
            
        Abstract In water resources applications (e.g., streamflow, rainfall‐runoff, urban water demand [UWD], etc.), ensemble member selection and ensemble member weighting are two difficult yet important tasks in the development of ensemble forecasting systems. We propose and test a stochastic data‐driven ensemble forecasting framework that uses archived deterministic forecasts as input and results in probabilistic water resources forecasts. In addition to input data and (ensemble) model output uncertainty, the proposed approach integrates both ensemble member selection and weighting uncertainties, using input variable selection and data‐driven methods, respectively. Therefore, it does not require one to perform ensemble member selection and weighting separately. We applied the proposed forecasting framework to a previous real‐world case study in Montreal, Canada, to forecast daily UWD at multiple lead times. Using wavelet‐based forecasts as input data, we develop the Ensemble Wavelet‐Stochastic Data‐Driven Forecasting Framework, the first multiwavelet ensemble stochastic forecasting framework that produces probabilistic forecasts. For the considered case study, several variants of Ensemble Wavelet‐Stochastic Data‐Driven Forecasting Framework, produced using different input variable selection methods (partial correlation input selection and Edgeworth Approximations‐based conditional mutual information) and data‐driven models (multiple linear regression, extreme learning machines, and second‐order Volterra series models), are shown to outperform wavelet‐ and nonwavelet‐based benchmarks, especially during a heat wave (first time studied in the UWD forecasting literature). , Key Points A stochastic data‐driven ensemble framework is introduced for probabilistic water resources forecasting Ensemble member selection and weighting uncertainties are explicitly considered alongside input data and model output uncertainties Wavelet‐based model outputs are used as input to the framework for an urban water demand forecasting study outperforming benchmark methods 
- 
            
        Canada has experienced some of the most rapid warming on Earth over the past few decades with a warming rate about twice that of the global mean temperature since 1948. Long-term warming is observed in Canada’s annual, winter and summer mean temperatures, and in the annual coldest and hottest daytime and nighttime temperatures. The causes of these changes are assessed by comparing observed changes with climate model simulated responses to anthropogenic and natural (solar and volcanic) external forcings. Most of the observed warming of 1.7°C increase in annual mean temperature during 1948–2012 [90% confidence interval (1.1°, 2.2°C)] can only be explained by external forcing on the climate system, with anthropogenic influence being the dominant factor. It is estimated that anthropogenic forcing has contributed 1.0°C (0.6°, 1.5°C) and natural external forcing has contributed 0.2°C (0.1°, 0.3°C) to the observed warming. Up to 0.5°C of the observed warming trend may be associated with low frequency variability of the climate such as that represented by the Pacific decadal oscillation (PDO) and North Atlantic oscillation (NAO). Overall, the influence of both anthropogenic and natural external forcing is clearly evident in Canada-wide mean and extreme temperatures, and can also be detected regionally over much of the country. 
- 
            
        AbstractA snow model forced by temperature and precipitation is used to simulate the spatial distribution of snow water equivalent (SWE) over a 600,000 km2 portion of the province of Quebec, Canada. We propose to improve model simulations by assimilating SWE data from sporadic manual snow surveys with a particle filter. A temporally and spatially correlated perturbation of the meteorological forcing is used to generate the set of particles. The magnitude of the perturbations is fixed objectively. First, the particle filter and direct insertion were both applied on 88 sites for which measured SWE consist of more or less five values per year over a period of 17 years. The temporal correlation of perturbations enables to improve the accuracy and the ensemble dispersion of the particle filter, while the spatial correlation lead to a spatial coherence in the particle weights. The spatial estimates of SWE obtained with the particle filter are compared with those obtained through optimal interpolation of the sno... 
- 
            
        Abstract River confluences are characterized by a complex mixing zone with three‐dimensional (3D) turbulent structures which have been described as both streamwise‐oriented structures and Kelvin–Helmholtz (KH) vertical‐oriented structures. The latter are visible where there is a turbidity difference between the two tributaries, whereas the former are usually derived from mean velocity measurements or numerical simulations. Few field studies recorded turbulent velocity fluctuations at high frequency to investigate these structures, particularly at medium‐sized confluences where logistical constraints make it difficult to use devices such as acoustic doppler velocimeter (ADV). This study uses the ice cover present at the confluence of the Mitis and Neigette Rivers in Quebec (Canada) to obtain long‐duration, fixed measurements along the mixing zone. The confluence is also characterized by a marked turbidity difference which allows to investigate the mixing zone dynamics from drone imagery during ice‐free conditions. The aim of the study is to characterize and compare the flow structure in the mixing zone at a medium‐sized (~40 m) river confluence with and without an ice cover. Detailed 3D turbulent velocity measurements were taken under the ice along the mixing plane with an ADV through eight holes at around 20 positions on the vertical. For ice‐free conditions, drone imagery results indicate that large (KH) coherent structures are present, occupying up to 50% of the width of the parent channel. During winter, the ice cover affects velocity profiles by moving the highest velocities towards the centre of the profiles. Large turbulent structures are visible in both the streamwise and lateral velocity components. The strong correlation between these velocity components indicates that KH vortices are the dominating coherent structures in the mixing zone. A spatio‐temporal conceptual model is presented to illustrate the main differences on the 3D flow structure at the river confluence with and without the ice cover. © 2019 John Wiley & Sons, Ltd. 
- 
            
        In time series of essential climatological variables, many discontinuities are created not by climate factors but changes in the measuring system, including relocations, changes in instrumentation, exposure or even observation practices. Some of these changes occur due to reorganization, cost-efficiency or innovation. In the last few decades, station movements have often been accompanied by the introduction of an automatic weather station (AWS). Our study identifies the biases in daily maximum and minimum temperatures using parallel records of manual and automated observations. They are selected to minimize the differences in surrounding environment, exposition, distance and difference in elevation. Therefore, the type of instrumentation is the most important biasing factor between both measurements. The pairs of weather stations are located in Piedmont, a region of Italy, and in Gaspe Peninsula, a region of Canada. They have 6years of overlapping period on average, and 5110 daily values. The approach implemented for the comparison is divided in four main parts: a statistical characterization of the daily temperature series; a comparison between the daily series; a comparison between the types of events, heat wave, cold wave and normal events; and a verification of the homogeneity of the difference series. Our results show a higher frequency of warm (+10%) and extremely warm (+35%) days in the automated system, compared with the parallel manual record. Consequently, the use of a composite record could significantly bias the calculation of extreme events. 
- 
            
        Abstract A new dynamical core of Environment and Climate Change Canada’s Global Environmental Multiscale (GEM) atmospheric model is presented. Unlike the existing log-hydrostatic-pressure-type terrain-following vertical coordinate, the proposed core adopts a height-based approach. The move to a height-based vertical coordinate is motivated by its potential for improving model stability over steep terrain, which is expected to become more prevalent with the increasing demand for very high-resolution forecasting systems. A dynamical core with height-based vertical coordinate generally requires an iterative solution approach. In addition to a three-dimensional iterative solver, a simplified approach has been devised allowing the use of a direct solver for the new dynamical core that separates a three-dimensional elliptic boundary value problem into a set of two-dimensional independent Helmholtz problems. The issue of dynamics–physics coupling has also been studied, and incorporating the physics tendencies within the discretized dynamical equations is found to be the most acceptable approach for the height-based vertical coordinate. The new dynamical core is evaluated using numerical experiments that include two-dimensional nonhydrostatic theoretical cases as well as 25-km resolution global forecasts. For a wide range of horizontal grid resolutions—from a few meters to up to 25 km—the results from the direct solution approach are found to be equivalent to the iterative approach for the new dynamical core. Furthermore, results from the different numerical experiments confirm that the new height-based dynamical core is equivalent to the existing pressure-based core in terms of solution accuracy. 
- 
            
        Soil moisture is often considered a direct way of quantifying agricultural drought since it is a measure of the availability of water to support crop growth. Measurements of soil moisture at regional scales have traditionally been sparse, but advances in land surface modelling and the development of satellite technology to indirectly measure surface soil moisture has led to the emergence of a number of national and global soil moisture data sets that can provide insight into the dynamics of agricultural drought. Droughts are often defined by normal conditions for a given time and place; as a result, data sets used to quantify drought need a representative baseline of conditions in order to accurately establish a normal. This presents a challenge when working with earth observation data sets which often have very short baselines for a single instrument. This study assessed three soil moisture data sets: a surface satellite soil moisture data set from the Soil Moisture and Ocean Salinity (SMOS) mission operating since 2010; a blended surface satellite soil moisture data set from the European Space Agency Climate Change Initiative (ESA-CCI) that has a long history and a surface and root zone soil moisture data set from the Canadian Meteorology Centre (CMC)’s Regional Deterministic Prediction System (RDPS). An iterative chi-squared statistical routine was used to evaluate each data set’s sensitivity to canola yields in Saskatchewan, Canada. The surface soil moisture from all three data sets showed a similar temporal trend related to crop yields, showing a negative impact on canola yields when soil moisture exceeded a threshold in May and June. The strength and timing of this relationship varied with the accuracy and statistical properties of the data set, with the SMOS data set showing the strongest relationship (peak X2 = 170 for Day of Year 145), followed by the ESA-CCI (peak X2 = 89 on Day of Year 129) and then the RDPS (peak X2 = 65 on Day of Year 129). Using short baseline soil moisture data sets can produce consistent results compared to using a longer data set, but the characteristics of the years used for the baseline are important. Soil moisture baselines of 18–20 years or more are needed to reliably estimate the relationship between high soil moisture and high yielding years. For the relationship between low soil moisture and low yielding years, a shorter baseline can be used, with reliable results obtained when 10–15 years of data are available, but with reasonably consistent results obtained with as few as 7 years of data. This suggests that the negative impacts of drought on agriculture may be reliably estimated with a relatively short baseline of data. 
- 
            
        La rivière L’Acadie, située en Montérégie (Québec, Canada), est un affluent de la rivière Richelieu et s’écoule vers le nord. Des inondations hivernales ayant de lourds impacts sur les milieux habités des municipalités de Chambly et de Carignan sont fréquentes sur cette rivière. Alors qu’au Québec on privilégie une approche hydrologique basée sur la récurrence des inondations en eau libre pour aménager les rives et la plaine inondable, l’approche hydrogéomorphologique permet de spatialiser les processus fluviaux qui posent un risque pour les communautés à partir d’une étude détaillée et systématique des formes du paysage fluvial. Cette approche permet d’acquérir une meilleure idée de l’impact de certains processus fluviaux tels que les embâcles de glace sur l’environnement humain et naturel. La présente recherche a pour objectif de spatialiser les propriétés et les impacts géomorphologiques du régime d’embâcles de glace au sein du bassin versant de la rivière L’Acadie. Des caractérisations des propriétés du bassin versant, du chenal, puis des berges de la rivière sont effectuées afin de localiser les problèmes d’embâcles de glace et décrire l’intensité de leur empreinte morphologique sur le milieu. De ces résultats découle une typologie des berges à laquelle est jumelée une analyse de la fréquence des évènements par l’étude des cicatrices glacielles sur la végétation riveraine. L’analyse démontre comment la morphométrie du chenal, la présence d’agriculture ainsi que l’héritage de la dernière glaciation quaternaire affectent le dynamisme du régime d’embâcles de glace qui se concentre en aval de la rivière. , L’Acadie River is a tributary of the Richelieu River that flows northwards through the southwestern region of Montérégie (Quebec, Canada). The river is well known for its frequent winter floods that severely affect the nearby towns of Chambly and Carignan. Even though legislation in Quebec has an approach based on the frequency of open water floods to control riverbanks and floodplain development, the study of river forms, known as hydrogeomorphology, provides a more comprehensive understanding of the impact of fluvial processes such as river ice jams. The main objective of this research is to gain knowledge on river ice dynamics based on their spatialization within L’Acadie River watershed. The characterization of the watershed, channel, and river bank properties and features is based on a hydrogeomorphological approach to spatialize river ice activity along the river. The study emphasizes that watershed properties, the ubiquity of agriculture, and the legacy of the Quaternary ice period in the area are all factors that contribute to ice scouring activity in the downstream section of the main channel. 
- 
            
        This study discusses the flooding related consequences of climate change on most populous Canadian cities and flow regulation infrastructure (FRI). The discussion is based on the aggregated results of historical and projected future flooding frequencies and flood timing as generated by Canada-wide hydrodynamic modelling in a previous study. Impact assessment on 100 most populous Canadian cities indicate that future flooding frequencies in some of the most populous cities such as Toronto and Montreal can be expected to increase from 100 (250) years to 15 (22) years by the end of the 21st century making these cities highest at risk to projected changes in flooding frequencies as a consequence of climate change. Overall 40–60% of the analyzed cities are found to be associated with future increases in flooding frequencies and associated increases in flood hazard and flood risk. The flooding related impacts of climate change on 1072 FRIs located across Canada are assessed both in terms of projected changes in future flooding frequencies and changes in flood timings. Results suggest that 40–50% of the FRIs especially those located in southern Ontario, western coastal regions, and northern regions of Canada can be expected to experience future increases in flooding frequencies. FRIs located in many of these regions are also projected to experience future changes in flood timing underlining that operating rules for those FRIs may need to be reassessed to make them resilient to changing climate. 
- 
            
        This study quantified the contributions of overland and tile flow to total runoff (sum of overland and tile flow) and nutrient losses in a Vertisolic soil in the Red River valley (Manitoba, Canada), a region with a cold climate where tile drainage is rapidly expanding. Most annual runoff occurred as overland flow (72–89%), during spring snowmelt and large spring and summer storms. Tile drains did not flow in early spring due to frozen ground. Although tiles flowed in late spring and summer (33–100% of event flow), this represented a small volume of annual runoff (10–25%), which is in stark contrast with what has been observed in other tile‐drained landscapes. Median daily flow‐weighted mean concentrations of soluble reactive P (SRP) and total P (TP) were significantly greater in overland flow than in tile flow ( p < 0.001), but the reverse pattern was observed for NO 3 –N ( p < 0.001). Overland flow was the primary export pathway for both P and NO 3 –N, accounting for >95% of annual SRP and TP and 50 to 60% of annual NO 3 –N losses. Data suggest that tile drains do not exacerbate P export from Vertisols in the Red River valley because they are decoupled from the surface by soil‐ice during snowmelt, which is the primary time for P loss. However, NO 3 –N loading to downstream water bodies may be exacerbated by tiles, particularly during spring and summer storms after fertilizer application. Core Ideas Overland flow was the primary pathway for runoff and nutrient loss at field edge. Most runoff and nutrient loss occurred during spring snowmelt and rain events. Tile drains are unlikely to exacerbate P losses from Vertisolic soils. Tile drains may enhance N loading in this region. 
- 
            
        Quantification of climate change impacts on the thermal regimes of rivers in British Columbia (BC) is crucial given their importance to aquatic ecosystems. Using the Air2Stream model, we investigate the impact of both air temperature and streamflow changes on river water temperatures from 1950 to 2015 across BC’s 234,000 km2 Fraser River Basin (FRB). Model results show the FRB’s summer water temperatures rose by nearly 1.0°C during 1950–2015 with 0.47°C spread across 17 river sites. For most of these sites, such increases in average summer water temperature have doubled the number of days exceeding 20°C, the water temperature that, if exceeded, potentially increases the physiological stress of salmon during migration. Furthermore, river sites, especially those in the upper and middle FRB, show significant associations between Pacific Ocean teleconnections and regional water temperatures. A multivariate linear regression analysis reveals that air temperature primarily controls simulated water temperatures in the FRB by capturing ~80% of its explained variance with secondary impacts through river discharge. Given such increases in river water temperature, salmon returning to spawn inthe Fraser River and its tributaries are facing continued and increasing physical challenges now and potentially into the future. 
- 
            
        Introduction:In July 2013, a train transporting oil derailed and exploded in Lac-Mégantic, causing major human, environmental, and economic impacts. A community-based survey of people aged 10-25, conducted in 2017, revealed that many young people suffer in silence and report feeling isolated. These observations led to the conclusion that we must make room for young people, and that opportunities for engagement and participation must be provided within the community.Aim:The Public Health Direction of Estrie aimed to identify strategies to promote health and wellbeing for young people living in and around Lac-Mégantic.Methods:A collective reflection half-day was hosted with sixty key stakeholders (school board, other education institutions, health and social services, community sector, municipal/political sector, parents, youth). Throughout the event, participants were invited to build on and learn from accomplishments and experiential knowledge, and develop a common vision of the solutions to be pursued or implemented. All qualitative data sources (verbal and written data from large- and sub-group activities) were analyzed through a content analysis.Results:Several themes (i.e. potential solutions) emerged from the analysis: common venue, diversified activities, communication, collaboration, involvement, support for at-risk youth, intergenerational component, etc. Participants agreed on four priorities for action: 1) creating a gathering place, 2) establishing a Youth Committee, 3) supporting adults working with youth, and 4) fostering a better flow of information.Discussion:Several positive outcomes of the collective reflection half-day were observed, including the mobilization of the participants who greatly appreciated the event, and many promising ideas launched by stakeholders. A social worker is now fully dedicated to supporting youth wellbeing and engagement in Lac-Mégantic. A Youth Committee has been established and projects by and for youth are being implemented. Bottom-up approaches to identify solutions to complex situations are not only effective but also respectful of the local culture.