Votre recherche
Résultats 130 ressources
-
While there is a large body of literature focusing on global-level flood hazard management, including preparedness, response, and recovery, there is a lack of research examining the patterns and dynamics of community-level flood management with a focus on local engagement and institutional mechanism. The present research explores how local communities mobilize themselves, both individually and institutionally, to respond to emerging flood-related situations and recover from their impacts. A case study approach was applied to investigate two towns in the Red River Valley of Manitoba, Canada: St. Adolphe and Ste. Agathe. Data collection consisted of in-depth interviews and oral histories provided by local residents, in addition to analysis of secondary official records and documents. The findings revealed that local community-level flood preparedness, response, and recovery in the Province of Manitoba are primarily designed, governed, managed, and evaluated by the provincial government authorities using a top-down approach. The non-participatory nature of this approach makes community members reluctant to engage with precautionary and response measures, which in turn results in undesired losses and damages. It is recommended that the Government of Manitoba develop and implement a collaborative and participatory community-level flood management approach that draws upon the accumulated experiential knowledge of local stakeholders and institutions.
-
AbstractFloods are the most frequent natural disaster in Canada, putting Canadian lives and property at risk. Projected variations in precipitation and temperature are expected to further intensify...
-
The mountain headwater Bow River at Banff, Alberta, Canada was subject to a large flood in June 2013, over which considerable debate has ensued regarding its probability of occurrence. It is therefore instructive to consider what information long term streamflow discharge records provide about environmental change in the Upper Bow River basin above Banff. Though protected as part of Banff National Park, since 1885, the basin has experienced considerable climate and land cover changes, each of which has the potential to impact observations, and hence the interpretations of flood probability. The Bow River at Banff hydrometric station is one of Canada's longest operating reference hydrological basin network stations and so has great value for assessing changes in flow regime over time. Furthermore, the station measures a river that provides an extremely important water supply for Calgary and irrigation district downstream and so is of great interest for assessing regional water security. These records were examined for changes in several flood attributes and to determine whether flow changes may have been related to landscape change within the basin as caused by forest fires, conversion from grasslands to forest with fire suppression, and regional climate variations and/or trends. Floods in the Upper Bow River are generated by both snowmelt and rain-on-snow (ROS) events, the latter type which include floods events generated by spatially and temporally large storms such as occurred in 2013. The two types of floods also have different frequency characteristics. Snowmelt and ROS flood attributes were not correlated significantly with any climate index or with burned area except that snowmelt event duration correlated negatively to the Pacific Decadal Oscillation. While there is a significant negative trend in all floods over the past 100years, when separated based on generating process, neither snowmelt floods nor large ROS floods associated with mesoscale storms show any trends over time. Despite extensive changes to the landscape of the basin and in within the climate system, the flood regime remains unchanged, something identified at smaller scales in the region but never at larger scales.
-
Abstract The present study analyses the impacts of past and future climate change on extreme weather events for southern parts of Canada from 1981 to 2100. A set of precipitation and temperature‐based indices were computed using the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) multi‐model ensemble projections at 8 km resolution over the 21st Century for two representative concentration pathway (RCP) scenarios: RCP4.5 and RCP8.5. The results show that this region is expected to experience stronger warming and a higher increase in precipitation extremes in future. Generally, projected changes in minimum temperature will be greater than changes in maximum temperature, as shown by respective indices. A decrease in frost days and an increase in warm nights will be expected. By 2100 there will be no cool nights and cool days. Daily minimum and maximum temperatures will increase by 12 and 7°C, respectively, under the RCP8.5 scenario, when compared with the reference period 1981–2000. The highest warming in minimum temperature and decrease in cool nights and days will occur in Ontario and Quebec provinces close to the Great Lakes and Hudson Bay. The highest warming in maximum temperature will occur in the southern parts of Alberta and Saskatchewan. Annual total precipitation is expected to increase by about 16% and the occurrence of heavy precipitation events by five days. The highest increase in annual total precipitation will occur in the northern parts of Ontario and Quebec and in western British Columbia.
-
Abstract Spatial and temporal trends in historical temperature and precipitation extreme events were evaluated for southern Ontario, Canada. A number of climate indices were computed using observed and regional and global climate datasets for the area of study over the 1951–2013 period. A decrease in the frequency of cold temperature extremes and an increase in the frequency of warm temperature extremes was observed in the region. Overall, the numbers of extremely cold days decreased and hot nights increased. Nighttime warming was greater than daytime warming. The annual total precipitation and the frequency of extreme precipitation also increased. Spatially, for the precipitation indices, no significant trends were observed for annual total precipitation and extremely wet days in the southwest and the central part of Ontario. For temperature indices, cool days and warm night have significant trends in more than 90% of the study area. In general, the spatial variability of precipitation indices is much higher than that of temperature indices. In terms of comparisons between observed and simulated data, results showed large differences for both temperature and precipitation indices. For this region, the regional climate model was able to reproduce historical observed trends in climate indices very well as compared with global climate models. The statistical bias-correction method generally improved the ability of the global climate models to accurately simulate observed trends in climate indices.
-
AbstractIn this study, high-resolution climate projections over Ontario, Canada, are developed through an ensemble modeling approach to provide reliable and ready-to-use climate scenarios for assessing plausible effects of future climatic changes at local scales. The Providing Regional Climates for Impacts Studies (PRECIS) regional modeling system is adopted to conduct ensemble simulations in a continuous run from 1950 to 2099, driven by the boundary conditions from a HadCM3-based perturbed physics ensemble. Simulations of temperature and precipitation for the baseline period are first compared to the observed values to validate the performance of the ensemble in capturing the current climatology over Ontario. Future projections for the 2030s, 2050s, and 2080s are then analyzed to help understand plausible changes in its local climate in response to global warming. The analysis indicates that there is likely to be an obvious warming trend with time over the entire province. The increase in average tempera...
-
AbstractTrends in Canada’s climate are analyzed using recently updated data to provide a comprehensive view of climate variability and long-term changes over the period of instrumental record. Trends in surface air temperature, precipitation, snow cover, and streamflow indices are examined along with the potential impact of low-frequency variability related to large-scale atmospheric and oceanic oscillations on these trends. The results show that temperature has increased significantly in most regions of Canada over the period 1948–2012, with the largest warming occurring in winter and spring. Precipitation has also increased, especially in the north. Changes in other climate and hydroclimatic variables, including a decrease in the amount of precipitation falling as snow in the south, fewer days with snow cover, an earlier start of the spring high-flow season, and an increase in April streamflow, are consistent with the observed warming and precipitation trends. For the period 1900–2012, there are suffici...
-
ABSTRACTTrends in indices based on daily temperature and precipitation are examined for two periods: 1948–2016 for all stations in Canada and 1900–2016 for stations in the south of Canada. These in...
-
Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.
-
Quantile estimates are generally interpreted in association with the return period concept in practical engineering. To do so with the peaks‐over‐threshold (POT) approach, combined Poisson‐generalized Pareto distributions (referred to as PD‐GPD model) must be considered. In this article, we evaluate the incorporation of non‐stationarity in the generalized Pareto distribution (GPD) and the Poisson distribution (PD) using, respectively, the smoothing‐based B‐spline functions and the logarithmic link function. Two models are proposed, a stationary PD combined to a non‐stationary GPD (referred to as PD0‐GPD1) and a combined non‐stationary PD and GPD (referred to as PD1‐GPD1). The teleconnections between hydro‐climatological variables and a number of large‐scale climate patterns allow using these climate indices as covariates in the development of non‐stationary extreme value models. The case study is made with daily precipitation amount time series from southeastern Canada and two climatic covariates, the Arctic Oscillation (AO) and the Pacific North American (PNA) indices. A comparison of PD0‐GPD1 and PD1‐GPD1 models showed that the incorporation of non‐stationarity in both POT models instead of solely in the GPD has an effect on the estimated quantiles. The use of the B‐spline function as link function between the GPD parameters and the considered climatic covariates provided flexible non‐stationary PD‐GPD models. Indeed, linear and nonlinear conditional quantiles are observed at various stations in the case study, opening an interesting perspective for further research on the physical mechanism behind these simple and complex interactions.
-
Water quality remains a major issue in Canada. This paper reviews recent research on the impacts of urbanization, agriculture and forestry on water quality in Canada. Specific water quality issues such as mining, sewage treatment and waste treatment are not included in this paper. For each land use, a brief summary of the dominant processes linking runoff to water quality is provided and recent findings are summarized. With respect to urbanized watersheds, the relatively large proportion of impervious areas, lower vegetation cover and the presence of high-density drainage systems alter surface water routing and timing of peak flows. High concentrations of heavy metals are considered to be the most important water quality problem in urban runoff, but nutrients, pathogens, concentration of pharmaceuticals and water temperature also often contribute. In watersheds dominated by agricultural activities, overland flow is an important vector of pollutants, but subsurface flow such as macropore and tile-drain flo...
-
Abstract Floods are the most frequently occurring natural hazard in Canada. An in‐depth understanding of flood seasonality and its drivers at a national scale is essential. Here, a circular, statistics‐based approach is implemented to understand the seasonality of annual‐maximum floods (streamflow) and to identify their responsible drivers across Canada. Nearly 80% and 70% of flood events were found to occur during spring and summer in eastern and western watersheds across Canada, respectively. Flooding in the eastern and western watersheds was primarily driven by snowmelt and extreme precipitation, respectively. This observation suggests that increases in temperature have led to early spring snowmelt‐induced floods throughout eastern Canada. Our results indicate that precipitation (snowmelt) variability can exert large controls on the magnitude of flood peaks in western (eastern) watersheds in Canada. Further, the nonstationarity of flood peaks is modelled to account for impact of the dynamic behaviour of the identified flood drivers on extreme‐flood magnitude by using a cluster of 74 generalized additive models for location scale and shape models, which can capture both the linear and nonlinear characteristics of flood‐peak changes and can model its dependence on external covariates. Using nonstationary frequency analysis, we find that increasing precipitation and snowmelt magnitudes directly resulted in a significant increase in 50‐year streamflow. Our results highlight an east–west asymmetry in flood seasonality, indicating the existence of a climate signal in flood observations. The understating of flood seasonality and flood responses under the dynamic characteristics of precipitation and snowmelt extremes may facilitate the predictability of such events, which can aid in predicting and managing their impacts.
-
Abstract Study region Canada. Study focus Given the effects of climate change on extreme precipitation, updated Intensity-Duration-Frequency (IDF) relationships have been adopted across Canada. Since the IDFs’ generation is based on the assumption of stationarity, the rainfall statistics information may be unreliable. Recent research is attempting to develop a new methodology to integrate non-stationarity and climate change into IDFs updating process. Up to now, there is no comprehensive evaluation of the IDFs updating procedure at different locations. In this study, we analyzed the combined effect of non-stationarity and climate change on future IDFs at six selected gauging stations across Canada. New hydrological insights for the region A comparison of the updated future IDFs with historical IDFs indicates an intensification of extreme events for all study areas, increasing hazard to them. Sites located in the Northeast coastal region will be the most affected in the future by the extreme precipitation. In addition, there is a clear indication that rare events (100-year return period) will become more frequent (in some cases increase up to 443 % of the water infrastructure risk of failure has been observed). We argue that the above findings (i) offer a new overview of future extreme precipitation across Canada, and (ii) should be considered by the stakeholders with respect to climate change adaptation decisions.
-
Summary Across the southern Canadian Prairies, annual precipitation is relatively low (200–400mm) and periodic water deficits limit economic and environmental productivity. Rapid population growth, economic development and climate change have exposed this region to increasing vulnerability to hydrologic drought. There is high demand for surface water, streamflow from the Rocky Mountains in particular. This paper describes the application of dendrohydrology to water resource management in this region. Four projects were initiated by the sponsoring organizations: a private utility, an urban municipality and two federal government agencies. The fact that government and industry would initiate and fund tree-ring research indicates that practitioners recognize paleohydrology as a legitimate source of technical support for water resource planning and management. The major advantage of tree-rings as a proxy of annual and seasonal streamflow is that the reconstructions exceed the length of gauge records by at least several centuries. The extent of our network of 180 tree-ring chronologies, spanning AD 549–2013 and ∼20° of latitude, with a high density of sites in the headwaters of the major river basins, enables us to construct large ensembles of tree-ring reconstructions as a means of expressing uncertainty in the inference of streamflow from tree rings. We characterize paleo-droughts in terms of modern analogues, translating the tree-ring reconstructions from a paleo-time scale to the time frame in which engineers and planners operate. Water resource managers and policy analysts have used our paleo-drought scenarios in their various forms to inform and assist drought preparedness planning, a re-evaluation of surface water apportionment policy and an assessment of the reliability of urban water supply systems.
-
Droughts have extensive consequences, affecting the natural environment, water quality, public health, and exacerbating economic losses. Precise drought forecasting is essential for promoting sustainable development and mitigating risks, especially given the frequent drought occurrences in recent decades. This study introduces the Improved Outlier Robust Extreme Learning Machine (IORELM) for forecasting drought using the Multivariate Standardized Drought Index (MSDI). For this purpose, four observation stations across British Columbia, Canada, were selected. Precipitation and soil moisture data with one up to six lags are utilized as inputs, resulting in 12 variables for the model. An exhaustive analysis of all potential input combinations is conducted using IORELM to identify the best one. The study outcomes emphasize the importance of incorporating precipitation and soil moisture data for accurate drought prediction. IORELM shows promising results in drought classification, and the best input combination was found for each station based on its results. While high Area Under Curve (AUC) values across stations, a Precision/Recall trade-off indicates variable prediction tendencies. Moreover, the F1-score is moderate, meaning the balance between Precision, Recall, and Classification Accuracy (CA) is notably high at specific stations. The results show that stations near the ocean, like Pitt Meadows, have higher predictability up to 10% in AUC and CA compared to inland stations, such as Langley, which exhibit lower values. These highlight geographic influence on model performance.