Votre recherche
Résultats 133 ressources
-
ABSTRACT Flood risk management (FRM) involves planning proactively for flooding in high‐risk areas to reduce its impacts on people and property. A key challenge for governments pursuing FRM is to pinpoint assets that are highly economically exposed and vulnerable to flood hazards in order to prioritize them in policy and planning. This paper presents a novel flood risk assessment, making use of a dataset that identifies the location, dwelling type, property characteristics, and potential economic losses of Canadian residential properties. The findings reveal that the average annual costs are $1.4B, but most of the risks are concentrated in high‐risk areas. Data gaps are uncovered that justify replication through local validation studies. The results provide a novel evidence base for specific reforms in Canada's approach to FRM, with a focus on insurance that improves both implementation and effectiveness.
-
Droughts are increasingly recognized as a significant global challenge, with severe impacts observed in Canada's Prairie provinces. While less frequent in Eastern Canada, prolonged precipitation deficits, particularly during summer, can lead to severe drought conditions. This study investigates the causes and consequences of droughts in New Brunswick (NB) by employing two drought indices: the Palmer Drought Severity Index (PDSI) and Standardized Evapotranspiration Deficit Index (SEDI)– at ten weather stations across NB from 1971 to 2020. Additionally, the Canadian Gridded Temperature and Precipitation Anomalies (CANGRD) dataset (1979–2014) was utilized to examine spatial and temporal drought variability and its alignment with station-based observations. Statistical analyses, including the Mann–Kendall test and Sen's slope estimator, were applied to assess trends in drought indices on annual and seasonal timescales using both station and gridded data. The results identified the most drought-vulnerable regions in NB and revealed significant spatial and temporal variability in drought severity over the 1971–2020 period. Trend analyses further highlighted the intensification of extreme drought events during specific years. Coastal areas in southern NB were found to be particularly susceptible to severe drought conditions compared to inland regions, consistent with observed declines in both the frequency of rainy days and daily precipitation amounts in these areas. These findings underscore the need for targeted drought mitigation strategies particularly in NB’s coastal zones, to address the region’s increasing vulnerability to extreme drought events.
-
Dans le contexte du réchauffement planétaire, la relation de Clausius Clapeyron (CC) est utilisée comme un indicateur de l’évolution des précipitations extrêmes. Parmi les théories proposées, nous utilisons dans notre recherche une relation exponentielle qui fait le lien entre l’évolution des centiles les plus extrêmes des précipitations et le changement de la température ΔT dans le climat actuel. Selon cette théorie, les précipitations augmentent au même rythme que la capacité de rétention d'humidité dans l’atmosphère, expliquée par la relation de CC, avec un taux de changement d'environ 7 % par degré Celsius pour des valeurs de température et de pression près de la surface. Ainsi, le présent travail vise à vérifier l’existence de liens physiquement plausibles dans la relation entre les précipitations extrêmes et la température de l’air pour la région du Bassin Versant de la Rivière des Outaouais (BVRO) sur la période 1981-2010, à l’aide des simulations du Modèle Régional Canadien du Climat (MRCC) (versions 5 et 6), développé au centre ESCER, et de deux produits de réanalyses du Centre Européen pour les prévisions météorologiques à moyen terme (CEPMMT) à différentes résolutions spatiales. En général, les précipitations quotidiennes suivent un taux de changement inférieur à celui de CC ; tandis que les précipitations horaires augmentent plus rapidement avec la température. Dans ce dernier cas, pour la simulation du MRCC5 à plus haute résolution spatiale, des taux de changement supérieurs à CC ont même été produits, jusqu’à 10,2 %/°C. Ce travail a également mis en évidence qu’au-delà du seuil de 20°C, la capacité de rétention d'humidité de l’atmosphère n’est pas le seul facteur déterminant pour générer des précipitations extrêmes, et que d’autres facteurs sont à considérer, comme la disponibilité de l'humidité au moment de l'événement de précipitation et la présence de mécanismes dynamiques qui favorisent les mouvements verticaux ascendants. Un comportement sous forme de crochet, qui décrit une augmentation des précipitations jusqu'à un seuil de température, est observé dans la saison estivale avec le MRCC5, mais il a disparu avec les simulations du MRCC6, ce qui pourrait être une conséquence d’avoir seulement une année de simulation disponible ou bien d’une conséquence de la très haute résolution du modèle sur les intervalles de température et sur les effets locaux. En conclusion, l'applicabilité de la relation de CC ne doit pas être généralisée quant à l’étude des précipitations extrêmes, il est également important de considérer l'échelle temporelle, la résolution du modèle utilisé et la saison de l'année. L’évolution de cette relation de CC devrait être évaluée avec des simulations à très haute résolution spatiale (version en développement au centre ESCER), et pour d’autres zones climatiques, sachant que les intervalles de températures et les effets locaux exercent un rôle majeur sur les occurrences et les intensités des fortes précipitations. Ces éléments sont essentiels à intégrer dans le contexte des changements climatiques, en raison des conséquences associées aux fortes précipitations, notamment sur l’occurrence des inondations. _____________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Clausius-Clapeyron, évènements extrêmes, aléas météorologiques, risques d’inondation, changements climatiques
-
While there is a large body of literature focusing on global-level flood hazard management, including preparedness, response, and recovery, there is a lack of research examining the patterns and dynamics of community-level flood management with a focus on local engagement and institutional mechanism. The present research explores how local communities mobilize themselves, both individually and institutionally, to respond to emerging flood-related situations and recover from their impacts. A case study approach was applied to investigate two towns in the Red River Valley of Manitoba, Canada: St. Adolphe and Ste. Agathe. Data collection consisted of in-depth interviews and oral histories provided by local residents, in addition to analysis of secondary official records and documents. The findings revealed that local community-level flood preparedness, response, and recovery in the Province of Manitoba are primarily designed, governed, managed, and evaluated by the provincial government authorities using a top-down approach. The non-participatory nature of this approach makes community members reluctant to engage with precautionary and response measures, which in turn results in undesired losses and damages. It is recommended that the Government of Manitoba develop and implement a collaborative and participatory community-level flood management approach that draws upon the accumulated experiential knowledge of local stakeholders and institutions.
-
AbstractFloods are the most frequent natural disaster in Canada, putting Canadian lives and property at risk. Projected variations in precipitation and temperature are expected to further intensify...
-
The mountain headwater Bow River at Banff, Alberta, Canada was subject to a large flood in June 2013, over which considerable debate has ensued regarding its probability of occurrence. It is therefore instructive to consider what information long term streamflow discharge records provide about environmental change in the Upper Bow River basin above Banff. Though protected as part of Banff National Park, since 1885, the basin has experienced considerable climate and land cover changes, each of which has the potential to impact observations, and hence the interpretations of flood probability. The Bow River at Banff hydrometric station is one of Canada's longest operating reference hydrological basin network stations and so has great value for assessing changes in flow regime over time. Furthermore, the station measures a river that provides an extremely important water supply for Calgary and irrigation district downstream and so is of great interest for assessing regional water security. These records were examined for changes in several flood attributes and to determine whether flow changes may have been related to landscape change within the basin as caused by forest fires, conversion from grasslands to forest with fire suppression, and regional climate variations and/or trends. Floods in the Upper Bow River are generated by both snowmelt and rain-on-snow (ROS) events, the latter type which include floods events generated by spatially and temporally large storms such as occurred in 2013. The two types of floods also have different frequency characteristics. Snowmelt and ROS flood attributes were not correlated significantly with any climate index or with burned area except that snowmelt event duration correlated negatively to the Pacific Decadal Oscillation. While there is a significant negative trend in all floods over the past 100years, when separated based on generating process, neither snowmelt floods nor large ROS floods associated with mesoscale storms show any trends over time. Despite extensive changes to the landscape of the basin and in within the climate system, the flood regime remains unchanged, something identified at smaller scales in the region but never at larger scales.
-
Abstract The present study analyses the impacts of past and future climate change on extreme weather events for southern parts of Canada from 1981 to 2100. A set of precipitation and temperature‐based indices were computed using the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) multi‐model ensemble projections at 8 km resolution over the 21st Century for two representative concentration pathway (RCP) scenarios: RCP4.5 and RCP8.5. The results show that this region is expected to experience stronger warming and a higher increase in precipitation extremes in future. Generally, projected changes in minimum temperature will be greater than changes in maximum temperature, as shown by respective indices. A decrease in frost days and an increase in warm nights will be expected. By 2100 there will be no cool nights and cool days. Daily minimum and maximum temperatures will increase by 12 and 7°C, respectively, under the RCP8.5 scenario, when compared with the reference period 1981–2000. The highest warming in minimum temperature and decrease in cool nights and days will occur in Ontario and Quebec provinces close to the Great Lakes and Hudson Bay. The highest warming in maximum temperature will occur in the southern parts of Alberta and Saskatchewan. Annual total precipitation is expected to increase by about 16% and the occurrence of heavy precipitation events by five days. The highest increase in annual total precipitation will occur in the northern parts of Ontario and Quebec and in western British Columbia.
-
Abstract Spatial and temporal trends in historical temperature and precipitation extreme events were evaluated for southern Ontario, Canada. A number of climate indices were computed using observed and regional and global climate datasets for the area of study over the 1951–2013 period. A decrease in the frequency of cold temperature extremes and an increase in the frequency of warm temperature extremes was observed in the region. Overall, the numbers of extremely cold days decreased and hot nights increased. Nighttime warming was greater than daytime warming. The annual total precipitation and the frequency of extreme precipitation also increased. Spatially, for the precipitation indices, no significant trends were observed for annual total precipitation and extremely wet days in the southwest and the central part of Ontario. For temperature indices, cool days and warm night have significant trends in more than 90% of the study area. In general, the spatial variability of precipitation indices is much higher than that of temperature indices. In terms of comparisons between observed and simulated data, results showed large differences for both temperature and precipitation indices. For this region, the regional climate model was able to reproduce historical observed trends in climate indices very well as compared with global climate models. The statistical bias-correction method generally improved the ability of the global climate models to accurately simulate observed trends in climate indices.
-
AbstractIn this study, high-resolution climate projections over Ontario, Canada, are developed through an ensemble modeling approach to provide reliable and ready-to-use climate scenarios for assessing plausible effects of future climatic changes at local scales. The Providing Regional Climates for Impacts Studies (PRECIS) regional modeling system is adopted to conduct ensemble simulations in a continuous run from 1950 to 2099, driven by the boundary conditions from a HadCM3-based perturbed physics ensemble. Simulations of temperature and precipitation for the baseline period are first compared to the observed values to validate the performance of the ensemble in capturing the current climatology over Ontario. Future projections for the 2030s, 2050s, and 2080s are then analyzed to help understand plausible changes in its local climate in response to global warming. The analysis indicates that there is likely to be an obvious warming trend with time over the entire province. The increase in average tempera...
-
AbstractTrends in Canada’s climate are analyzed using recently updated data to provide a comprehensive view of climate variability and long-term changes over the period of instrumental record. Trends in surface air temperature, precipitation, snow cover, and streamflow indices are examined along with the potential impact of low-frequency variability related to large-scale atmospheric and oceanic oscillations on these trends. The results show that temperature has increased significantly in most regions of Canada over the period 1948–2012, with the largest warming occurring in winter and spring. Precipitation has also increased, especially in the north. Changes in other climate and hydroclimatic variables, including a decrease in the amount of precipitation falling as snow in the south, fewer days with snow cover, an earlier start of the spring high-flow season, and an increase in April streamflow, are consistent with the observed warming and precipitation trends. For the period 1900–2012, there are suffici...
-
ABSTRACTTrends in indices based on daily temperature and precipitation are examined for two periods: 1948–2016 for all stations in Canada and 1900–2016 for stations in the south of Canada. These in...
-
Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.
-
Quantile estimates are generally interpreted in association with the return period concept in practical engineering. To do so with the peaks‐over‐threshold (POT) approach, combined Poisson‐generalized Pareto distributions (referred to as PD‐GPD model) must be considered. In this article, we evaluate the incorporation of non‐stationarity in the generalized Pareto distribution (GPD) and the Poisson distribution (PD) using, respectively, the smoothing‐based B‐spline functions and the logarithmic link function. Two models are proposed, a stationary PD combined to a non‐stationary GPD (referred to as PD0‐GPD1) and a combined non‐stationary PD and GPD (referred to as PD1‐GPD1). The teleconnections between hydro‐climatological variables and a number of large‐scale climate patterns allow using these climate indices as covariates in the development of non‐stationary extreme value models. The case study is made with daily precipitation amount time series from southeastern Canada and two climatic covariates, the Arctic Oscillation (AO) and the Pacific North American (PNA) indices. A comparison of PD0‐GPD1 and PD1‐GPD1 models showed that the incorporation of non‐stationarity in both POT models instead of solely in the GPD has an effect on the estimated quantiles. The use of the B‐spline function as link function between the GPD parameters and the considered climatic covariates provided flexible non‐stationary PD‐GPD models. Indeed, linear and nonlinear conditional quantiles are observed at various stations in the case study, opening an interesting perspective for further research on the physical mechanism behind these simple and complex interactions.