Votre recherche
Résultats 85 ressources
- 
            
        
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations produce non-exceedance probability profiles, which indicate the likelihood of various flood levels occurring due to ice jams. The flood levels associated with specific return periods were validated using historical gauge records. The empirical equations require input parameters such as channel width, slope, and thalweg elevation, which were obtained from bathymetric surveys. This approach is applied to assess ice-jam flood hazards by extrapolating data from a gauged reach at Fort Simpson to an ungauged reach at Jean Marie River along the Mackenzie River in Canada’s Northwest Territories. The analysis further suggests that climate change is likely to increase the severity of ice-jam flood hazards in both reaches by the end of the century. This methodology is applicable to other cold-region rivers in Canada and northern Europe, provided similar fluvial geomorphological and hydro-meteorological data are available, making it a valuable tool for ice-jam flood risk assessment in other ungauged areas. © 2025 by the authors.
 - 
            
        
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
 - 
            
        
<p><strong class="journal-contentHeaderColor">Abstract.</strong> Year-round river discharge estimation and forecasting is a critical component of sustainable water resource management. However, in cold climate regions such as Canada, this basic task gets intricated due to the challenge of river ice conditions. River ice conditions are dynamic and can change quickly in a short period of time. This dynamic nature makes river ice conditions difficult to forecast. Moreover, the observation of under-ice river discharge also remains a challenge since no reliable method for its estimation has been developed till date. It is therefore an active field of research and development. The integration of river ice hydraulic models in forecasting systems has remained relatively uncommon. The current study has two main objectives: first is to demonstrate the development and capabilities of a river ice forecasting system based on coupled hydrological and hydraulic modelling approach for the Chaudière River in Québec; and second is to assess its functionality over selected winter events. The forecasting system is developed within a well-known operational forecasting platform: the Delft Flood Early Warning System (Delft-FEWS). The current configuration of the systems integrates (i) meteorological products such as the Regional Ensemble Prediction System (REPS); (ii) a hydrological module implemented through the HydrOlOgical Prediction LAboratory (HOOPLA), a multi-model based hydrological modelling framework; and (iii) hydraulic module implemented through a 1D steady and unsteady HEC-RAS river ice models. The system produces ensemble forecasts for discharge and water level and provides flexibility to modify various dynamic parameters within the modelling chain such as discharge timeseries, ice thickness, ice roughness as well as carryout hindcasting experiments in a batch production way. Performance of the coupled modelling approach was assessed using “Perfect forecast” over winter events between 2020 and 2023 winter seasons. The root mean square error (RMSE) and percent bias (Pbias) metrics were calculated. The hydrologic module of the system showed significant deviations from the observations. These deviations could be explained by the inherent uncertainty in the under-ice discharge estimates as well as uncertainty in the modelling chain. The hydraulic module of the system performed better and the Pbias was within ±10 %.</p>
 - 
            
        
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
 - 
            
        
A new method for sensitivity analysis of water depths is presented based on a two-dimensional hydraulic model as a convenient and cost-effective alternative to Monte Carlo simulations. The method involves perturbation of the probability distribution of input variables. A relative sensitivity index is calculated for each variable, using the Gauss quadrature sampling, thus limiting the number of runs of the hydraulic model. The variable-related highest variation of the expected water depths is considered to be the most influential. The proposed method proved particularly efficient, requiring less information to describe model inputs and fewer model executions to calculate the sensitivity index. It was tested over a 45 km long reach of the Richelieu River, Canada. A 2D hydraulic model was used to solve the shallow water equations (SWE). Three input variables were considered: Flow rate, Manning’s coefficient, and topography of a shoal within the considered reach. Four flow scenarios were simulated with discharge rates of 759, 824, 936, and 1113 m 3 / s . The results show that the predicted water depths were most sensitive to the topography of the shoal, whereas the sensitivity indices of Manning’s coefficient and the flow rate were comparatively lower. These results are important for making better hydraulic models, taking into account the sensitivity analysis.
 - 
            
        
In recent years, understanding and improving the perception of flood risk has become an important aspect of flood risk management and flood risk reduction policies. The aim of this study was to explore perceptions of flood risk in the Petite Nation River watershed, located in southern Quebec, Canada. A survey was conducted with 130 residents living on a floodplain in this river watershed, which had been affected by floods in the spring of 2017. Participants were asked about different aspects related to flood risk, such as the flood hazard experience, the physical changes occurring in the environment, climate change, information accessibility, flood risk governance, adaptation measures, and finally the perception of losses. An analysis of these factors provided perspectives for improving flood risk communication and increasing the public awareness of flood risk. The results indicated that the analyzed aspects are potentially important in terms of risk perception and showed that the flood risk perceptions varied for each aspect analyzed. In general, the information regarding flood risk management is available and generally understandable, and the level of confidence was good towards most authorities. However, the experiences of flood risk and the consequences of climate change on floods were not clear among the respondents. Regarding the adaptation measures, the majority of participants tended to consider non-structural adaptation measures as being more relevant than structural ones. Moreover, the long-term consequences of flooding on property values are of highest concern. These results provide a snapshot of citizens’ risk perceptions and their opinions on topics that are directly related to such risks.
 - 
            
        
In Canada, flooding is the most common and costly natural hazard. Flooding events significantly impact communities, damage infrastructures and threaten public security. Communication, as part of a flood risk management strategy, is an essential means of countering these threats. It is therefore important to develop new and innovative tools to communicate the flood risk with citizens. From this perspective, the use of story maps can be very effectively implemented for a broad audience, particularly to stakeholders. This paper details how an interactive web-based story map was set up to communicate current and future flood risks in the Petite-Nation River watershed, Quebec (Canada). This web technology application combines informative texts and interactive maps on current and future flood risks in the Petite-Nation River watershed. Flood risk and climate maps were generated using the GARI tool, implemented using a geographic information system (GIS) supported by ArcGIS Online (Esri). Three climate change scenarios developed by the Hydroclimatic Atlas of Southern Quebec were used to visualize potential future impacts. This study concluded that our story map is an efficient flood hazard communication tool. The assets of this interactive web mapping tool are numerous, namely user-friendly mapping, use and interaction, and customizable displays.
 - 
            
        
This paper presents a new framework for floodplain inundation modeling in an ungauged basin using unmanned aerial vehicles (UAVs) imagery. This method is based on the integrated analysis of high-resolution ortho-images and elevation data produced by the structure from motion (SfM) technology. To this end, the Flood-Level Marks (FLMs) were created from high-resolution UAV ortho-images and compared to the flood inundated areas simulated using the HEC-RAS hydraulic model. The flood quantiles for 25, 50, 100, and 200 return periods were then estimated by synthetic hydrographs using the Natural Resources Conservation Service (NRCS). The proposed method was applied to UAV image data collected from the Khosban village, in Taleghan County, Iran, in the ungauged sub-basin of the Khosban River. The study area is located along one kilometre of the river in the middle of the village. The results showed that the flood inundation areas modeled by the HEC-RAS were 33%, 19%, and 8% less than those estimated from the UAV’s FLMs for 25, 50, and 100 years return periods, respectively. For return periods of 200 years, this difference was overestimated by more than 6%, compared to the UAV’s FLM. The maximum flood depth in our four proposed scenarios of hydraulic models varied between 2.33 to 2.83 meters. These analyses showed that this method, based on the UAV imagery, is well suited to improve the hydraulic modeling for seasonal inundation in ungauged rivers, thus providing reliable support to flood mitigation strategies
 - 
            
        
Geohazards associated with the dynamics of the liquid and solid water of the Earth’s hydrosphere, such as floods and glacial processes, may pose significant risks to populations, activities and properties [...]
 - 
            
        
Résumé L'hydrogéomorphologie étudie la dynamique des rivières en se concentrant sur les interactions liant la structure des écoulements, la mobilisation et le transport des sédiments et les morphologies qui caractérisent les cours d'eau et leur bassin‐versant. Elle offre un cadre d'analyse et des outils pour une meilleure intégration des connaissances sur la dynamique des rivières pour la gestion des cours d'eau au sens large, et plus spécifiquement, pour leur restauration, leur aménagement et pour l'évaluation et la prévention des risques liés aux aléas fluviaux. Au Québec, l'hydrogéomorphologie émerge comme contribution significative dans les approches de gestion et d'évaluation du risque et se trouve au cœur d'un changement de paradigme dans la gestion des cours d'eau par lequel la restauration des processus vise à augmenter la résilience des systèmes et des sociétés et à améliorer la qualité des environnements fluviaux. Cette contribution expose la trajectoire de l'hydrogéomorphologie au Québec à partir des publications scientifiques de géographes du Québec et discute des visées de la discipline en recherche et en intégration des connaissances pour la gestion des cours d'eau . , Abstract Hydrogeomorphology studies river dynamics, focusing on the interactions between flow structure, sediment transport, and the morphologies that characterize rivers and their watersheds. It provides an analytical framework and tools for better integrating knowledge of river dynamics into river management in the broadest sense, and more specifically, into river restoration as well as into the assessment and prevention of risks associated with fluvial hazards. In Quebec, hydrogeomorphology is emerging as a significant contribution to risk assessment and management approaches, and is at the heart of a paradigm shift in river management whereby process restoration aims to increase the resilience of fluvial systems and societies, and improve the quality of fluvial environments. This contribution outlines the trajectory of hydrogeomorphology in Quebec, based on scientific publications by Quebec geographers, and discusses the discipline's aims in research and knowledge integration for river management . , Messages clés Les géographes du Québec ont contribué fortement au développement des connaissances et outils de l'hydrogéomorphologie. L'hydrogéomorphologie a évolué d'une science fondamentale à une science où les connaissances fondamentales sont au service de la gestion des cours d'eau. L'hydrogéomorphologie et le cortège de connaissances et d'outils qu'elle promeut font de cette discipline une partenaire clé pour une gestion holistique des cours d'eau.
 - 
            
        
Atmospheric reanalysis data provides a numerical description of global and regional water cycles by combining models and observations. These datasets are increasingly valuable as a substitute for observations in regions where these are scarce. They could significantly contribute to reducing losses by feeding flood early warning systems that can inform the population and guide civil security action. We assessed the suitability of two different precipitation and temperature reanalysis products readily available for predicting historic flooding of the La Chaudière River in Quebec: 1) Environment and Climate Change Canada's Regional Deterministic Reanalysis System (RDRS-v2) and 2) ERA5 from the Copernicus Climate Change Service. We exploited a multi-model hydrological ensemble prediction system that considers three sources of uncertainty: initial conditions, model structure, and weather forcing to produce streamflow forecasts up to 5 days into the future with a time step of 3 hours. These results are compared to a provincial reference product based on gauge measurements of the Ministère de l'Environnement et de la Lutte contre les Changements Climatiques. Then, five conceptual hydrological models were calibrated with three different meteorological datasets (RDRS-v2, ERA5, and observational gridded) and fed with two ensemble weather forecast products: 1) the Regional Ensemble Prediction System (REPS) from the Environment and Climate Change Canada and 2) the ensemble forecast issued by the European Centre for Medium-Range Weather Forecasts (ECMWF). Results reveal that the calibration of the model with reanalysis data as input delivered a higher accuracy in the streamflow simulation providing a useful resource for flood modeling where no other data is available. However, although the selection of the reanalysis is a determinant of capturing the flood volumes, selecting weather forecasts is more critical in anticipating discharge threshold exceedances.
 - 
            
        
<p>Spring floods have generated colossal damages to residential areas in the Province of Quebec, Canada, in 2017 and 2019. Government authorities need accurate modelling of the impact of theoretical floods in order to prioritize pre-disaster mitigation projects to reduce vulnerability. They also need accurate modelling of forecasted floods in order to direct emergency responses.&#160;</p><p>We present a governmental-academic collaboration that aims at modelling flood impact for both theoretical and forecasted flooding events over all populated river reaches of meridional Quebec. The project, funded by the minist&#232;re de la S&#233;curit&#233; publique du Qu&#233;bec (Quebec ministry in charge of public security), consists in developing a diagnostic tool and methods to assess the risk and impacts of flooding. Tools under development are intended to be used primarily by policy makers.&#160;</p><p>The project relies on water level data based on the hydrological regimes of nearly 25,000 km of rivers, on high-precision digital terrain models, and on a detailed database of building footprints and characterizations. It also relies on 24h and 48h forecasts of maximum flow for the subject rivers. The developed tools integrate large data sets and heterogeneous data sources and produce insightful metrics on the physical extent and costs of floods and on their impact on the population. The software also provides precise information about each building affected by rising water, including an estimated cost of the damages and impact on inhabitants.&#160;&#160;</p>
 - 
            
        
<p>In snow-prone regions, snowmelt is one of the main drivers of runoff. For operational flood forecasting and mitigation, the spatial distribution of snow water equivalent (SWE) in near real time is necessary. In this context, in situ observations of SWE provide a valuable information. Nonetheless, the high spatial variability of snowpack characteristics makes it necessary to implement some kind of snow modelling to get a spatially continuous estimation. Data assimilation is thus a useful approach to combine information from both observation and modeling in near real-time. </p><p>For example, at the provincial government of Quebec (eastern Canada), the HYDROTEL Snowpack Model is applied on a daily basis over a 0.1 degree resolution mesh covering the whole province. The modelled SWE is corrected in real time by in situ manual snow survey which are assimilated using a spatial particles filter (Cantet et al., 2019). This assimilation method improves the reliability of SWE estimation at ungauged sites.</p><p>The availability of manual snow surveys is however limited both in space and time. These measurements are conducted on a bi-weekly basis in a limited number of sites. In order to further improve the temporal and spatial observation coverage, alternative sources of data should be considered.</p><p>In this research, it is hypothesized that data gathered by SR50 sonic sensors can be assimilated in the spatial particle filter to improve the SWE estimation. These automatic sensors provide hourly measurements of snow depth and have been deployed in Quebec since 2005. Beforehand, probabilistic SWE estimations were derived from the SR50 snow depth measurements using an ensemble of artificial neural networks (Odry et al. 2019). Considering the nature of the data and the conversion process, the uncertainty associated with this dataset is supposed larger than for the manual snow surveys. The objective of the research is to evaluate the potential interest of adding this lower-quality information in the assimilation framework.</p><p>The addition of frequent but uncertain data in the spatial particle filter required some adjustments in term of assimilation frequency and particle resampling. A reordering of the particles was implemented to maintain the spatial coherence between the different particles. With these changes, the consideration of both manual snow surveys and SR50 data in the spatial particle filter reached performances that are comparable to the initial particle filter that combines only the model and manual snow survey for estimating SWE in ungauged sites. However, the addition of SR50 data in the particle filter allows for continuous information in time, between manual snow surveys.</p><p>&#160;</p><p><strong>References:</strong></p><p>Cantet, P., Boucher, M.-A., Lachance-Coutier, S., Turcotte, R., Fortin, V. (2019). Using a particle filter to estimate the spatial distribution of the snowpack water equivalent. J. Hydrometeorol, 20.</p><p>Odry, J., Boucher, M.-A., Cantet,P., Lachance-Cloutier, S., Turcotte, R., St-Louis, P.-Y. (2019). Using artificial neural networks to estimate snow water equivalent from snow depth. Canadian water ressources journal (under review)</p>
 - 
            
        
AbstractIn this time of a changing climate, it is important to know whether lake levels will rise, potentially causing flooding, or river flows will dry up during abnormally dry weather. The Great Lakes region is the largest freshwater lake system in the world. Moreover, agriculture, industry, commerce, and shipping are active in this densely populated region. Environment and Climate Change Canada (ECCC) recently implemented the Water Cycle Prediction System (WCPS) over the Great Lakes and St. Lawrence River watershed (WCPS-GLS version 1.0) following a decade of research and development. WCPS, a network of linked models, simulates the complete water cycle, following water as it moves from the atmosphere to the surface, through the river network and into lakes, and back to the atmosphere. Information concerning the water cycle is passed between the models. WCPS is the first short-to-medium-range prediction system of the complete water cycle to be run on an operational basis anywhere. It currently produces ...
 - 
            
        
Study region Hudson Bay Lowlands watersheds, Ontario, Canada. Study Focus The rivers in the Hudson Bay Lowlands are a major source of freshwater entering the Arctic Ocean and they also cause major floods. In recent decades, this region has been affected by major changes in hydroclimatic processes attributed to climate change and natural climate variability. In this study, we used ERA5 reanalysis data, hydrometric observations, and the hydrological model MESH, to investigate the impact of atmospheric circulation on the inter-decadal variability of streamflow between 1979 and 2018 in the Hudson Bay Lowlands. The natural climate variability was assessed using a weather regimes approach based on the discretization of daily geopotential height anomalies (Z500) from ERA5 reanalysis, as well as large scale oceanic and atmospheric variability modes. New hydrological insights The results showed an anomalous convergence of atmospheric moisture flux between 1995–2008 that enhanced precipitation and increased streamflow in the western part of the region. This moisture convergence was likely driven by the combination of (i) low pressure anomalies in the East Coast of North America and (ii) low pressure anomalies in western regions of Canada, associated with the cold phase of the pacific decadal oscillation (PDO). Since 2009, streamflow remains high, likely due to more groundwater discharge associated with the degradation of permafrost.
 - 
            
        
Fluvial systems in southern Ontario are regularly affected by widespread early-spring flood events primarily caused by rain-on-snow events. Recent studies have shown an increase in winter floods in this region due to increasing winter temperature and precipitation. Streamflow simulations are associated with uncertainties mainly due to the different scenarios of greenhouse gas emissions, global climate models (GCMs) or the choice of the hydrological model. The internal variability of climate, defined as the chaotic variability of atmospheric circulation due to natural internal processes within the climate system, is also a source of uncertainties to consider. Uncertainties of internal variability can be assessed using hydrological models fed by downscaled data of a global climate model large ensemble (GCM-LE), but GCM outputs have too coarse of a scale to be used in hydrological modeling. The Canadian Regional Climate Model Large Ensemble (CRCM5-LE), a 50-member ensemble downscaled from the Canadian Earth System Model version 2 Large Ensemble (CanESM2-LE), was developed to simulate local climate variability over northeastern North America under different future climate scenarios. In this study, CRCM5-LE temperature and precipitation projections under an RCP8.5 scenario were used as input in the Precipitation Runoff Modeling System (PRMS) to simulate streamflow at a near-future horizon (2026–2055) for four watersheds in southern Ontario. To investigate the role of the internal variability of climate in the modulation of streamflow, the 50 members were first grouped in classes of similar projected change in January–February streamflow and temperature and precipitation between 1961–1990 and 2026–2055. Then, the regional change in geopotential height (Z500) from CanESM2-LE was calculated for each class. Model simulations showed an average January–February increase in streamflow of 18 % (±8.7) in Big Creek, 30.5 % (±10.8) in Grand River, 29.8 % (±10.4) in Thames River and 31.2 % (±13.3) in Credit River. A total of 14 % of all ensemble members projected positive Z500 anomalies in North America's eastern coast enhancing rain, snowmelt and streamflow volume in January–February. For these members the increase of streamflow is expected to be as high as 31.6 % (±8.1) in Big Creek, 48.3 % (±11.1) in Grand River, 47 % (±9.6) in Thames River and 53.7 % (±15) in Credit River. Conversely, 14 % of the ensemble projected negative Z500 anomalies in North America's eastern coast and were associated with a much lower increase in streamflow: 8.3 % (±7.8) in Big Creek, 18.8 % (±5.8) in Grand River, 17.8 % (±6.4) in Thames River and 18.6 % (±6.5) in Credit River. These results provide important information to researchers, managers, policymakers and society about the expected ranges of increase in winter streamflow in a highly populated region of Canada, and they will help to explain how the internal variability of climate is expected to modulate the future streamflow in this region.
 - 
            
        
Abstract. In northern cold-temperate countries, a large portion of annual streamflow is produced by spring snowmelt, which often triggers floods. It is important to have spatial information about snow parameters such as snow water equivalent (SWE), which can be incorporated into hydrological models, making them more efficient tools for improved decision-making. The future Terrestrial Snow Mass Mission (TSMM) aims to provide high-resolution spatially distributed SWE information; thus, spatial SWE calibration should be considered along with conventional streamflow calibration for model optimization since the overall water balance is often a key objective in the hydrological modelling. The present research implements a unique spatial pattern metric in a multi-objective framework for calibration approach of hydrological models and attempts to determine whether raw SNODAS data can be utilized for hydrological model calibration. The SPAtial Efficiency (SPAEF) metric is explored for spatially calibrating SWE. The HYDROTEL hydrological model is applied to the Au Saumon River Watershed (∽1120 km2) in Eastern Canada using MSWEP precipitation data and ERA-5 land reanalysis temperature data as input to generate high-resolution SWE and streamflow. Different calibration experiments are performed combining Nash-Sutcliffe efficiency (NSE) for streamflow and root-mean-square error (RMSE), and SPAEF for SWE, using the Dynamically Dimensioned Search (DDS) and Pareto Archived Multi-Objective Optimization (PADDS) algorithms. Results of the study demonstrate that multi-objective calibration outperforms sequential calibration in terms of model performance. Traditional model calibration involving only streamflow produced slightly higher NSE values; however, the spatial distribution of SWE could not be adequately maintained. This study indicates that utilizing SPAEF for spatial calibration of snow parameters improved streamflow prediction compared to the conventional practice of using RMSE for calibration. SPAEF is further implied to be a more effective metric than RMSE for both sequential and multi-objective calibration. During validation, the calibration experiment incorporating multi-objective SPAEF exhibits enhanced performance in terms of NSE and Kling-Gupta Efficiency (KGE) compared to calibration experiment solely based on NSE. This observation supports the notion that incorporating SPAEF computed on raw SNODAS data within the calibration framework results in a more robust hydrological model.
 - 
            
        
Abstract. The amount and phase of cold season precipitation accumulating in the upper Saint John River basin are critical factors in determining spring runoff, ice-jams, and flooding in downstream communities. To study the impact of winter and spring storms on the snowpack in the upper Saint John River (SJR) basin, the Saint John River Experiment on Cold Season Storms (SAJESS) utilized meteorological instrumentation, upper air soundings, human observations, and hydrometeor macrophotography during winter/spring 2020–21. Here, we provide an overview of the SAJESS study area, field campaign, and existing data networks surrounding the upper SJR basin. Initially, meteorological instrumentation was co-located with an Environment and Climate Change Canada station near Edmundston, New Brunswick, in early December 2020. This was followed by an intensive observation period that involved manual observations, upper-air soundings, a multi-angle snowflake camera, macrophotography of solid hydrometeors, and advanced automated instrumentation throughout March and April 2021. The resulting datasets include optical disdrometer size and velocity distributions of hydrometeors, micro rain radar output, near-surface meteorological observations, and wind speed, temperature, pressure and precipitation amounts from a K63 Hotplate precipitation gauge, the first one operating in Canada. These data are publicly available from the Federated Research Data Repository at https://doi.org/10.20383/103.0591 (Thompson et al., 2022). We also include a synopsis of the data management plan and data processing, and a brief assessment of the rewards and challenges of utilizing community volunteers for hydro-meteorological citizen science.