Votre recherche
Résultats 4 ressources
-
Water quality remains a major issue in Canada. This paper reviews recent research on the impacts of urbanization, agriculture and forestry on water quality in Canada. Specific water quality issues such as mining, sewage treatment and waste treatment are not included in this paper. For each land use, a brief summary of the dominant processes linking runoff to water quality is provided and recent findings are summarized. With respect to urbanized watersheds, the relatively large proportion of impervious areas, lower vegetation cover and the presence of high-density drainage systems alter surface water routing and timing of peak flows. High concentrations of heavy metals are considered to be the most important water quality problem in urban runoff, but nutrients, pathogens, concentration of pharmaceuticals and water temperature also often contribute. In watersheds dominated by agricultural activities, overland flow is an important vector of pollutants, but subsurface flow such as macropore and tile-drain flo...
-
Phosphorus (P) mobilization in agricultural landscapes is regulated by both hydrologic (transport) and biogeochemical (supply) processes interacting within soils; however, the dominance of these controls can vary spatially and temporally. In this study, we analyzed a 5‐yr dataset of stormflow events across nine agricultural fields in the lower Great Lakes region of Ontario, Canada, to determine if edge‐of‐field surface runoff and tile drainage losses (total and dissolved reactive P) were limited by transport mechanisms or P supply. Field sites ranged from clay loam, silt loam, to sandy loam textures. Findings indicate that biogeochemical processes (P supply) were more important for tile drain P loading patterns (i.e., variable flow‐weighted mean concentrations ([ C f ]) across a range of flow regimes) relative to surface runoff, which trended toward a more chemostatic or transport‐limited response. At two sites with the same soil texture, higher tile [ C f ] and greater transport limitations were apparent at the site with higher soil available P (STP); however, STP did not significantly correlate with tile [ C f ] or P loading patterns across the nine sites. This may reflect that the fields were all within a narrow STP range and were not elevated in STP concentrations (Olsen‐P, ≤25 mg kg −1 ). For the study sites where STP was maintained at reasonable concentrations, hydrology was less of a driving factor for tile P loadings, and thus management strategies that limit P supply may be an effective way to reduce P losses from fields (e.g., timing of fertilizer application). Core Ideas We used metrics to evaluate controls on edge‐of‐field phosphorus losses. We examined a 5‐yr database of stormflow events (all seasons, including winter). Tile P runoff trended toward being more supply limited than surface runoff.