Votre recherche
Résultats 11 ressources
-
Dans le contexte du réchauffement planétaire, la relation de Clausius Clapeyron (CC) est utilisée comme un indicateur de l’évolution des précipitations extrêmes. Parmi les théories proposées, nous utilisons dans notre recherche une relation exponentielle qui fait le lien entre l’évolution des centiles les plus extrêmes des précipitations et le changement de la température ΔT dans le climat actuel. Selon cette théorie, les précipitations augmentent au même rythme que la capacité de rétention d'humidité dans l’atmosphère, expliquée par la relation de CC, avec un taux de changement d'environ 7 % par degré Celsius pour des valeurs de température et de pression près de la surface. Ainsi, le présent travail vise à vérifier l’existence de liens physiquement plausibles dans la relation entre les précipitations extrêmes et la température de l’air pour la région du Bassin Versant de la Rivière des Outaouais (BVRO) sur la période 1981-2010, à l’aide des simulations du Modèle Régional Canadien du Climat (MRCC) (versions 5 et 6), développé au centre ESCER, et de deux produits de réanalyses du Centre Européen pour les prévisions météorologiques à moyen terme (CEPMMT) à différentes résolutions spatiales. En général, les précipitations quotidiennes suivent un taux de changement inférieur à celui de CC ; tandis que les précipitations horaires augmentent plus rapidement avec la température. Dans ce dernier cas, pour la simulation du MRCC5 à plus haute résolution spatiale, des taux de changement supérieurs à CC ont même été produits, jusqu’à 10,2 %/°C. Ce travail a également mis en évidence qu’au-delà du seuil de 20°C, la capacité de rétention d'humidité de l’atmosphère n’est pas le seul facteur déterminant pour générer des précipitations extrêmes, et que d’autres facteurs sont à considérer, comme la disponibilité de l'humidité au moment de l'événement de précipitation et la présence de mécanismes dynamiques qui favorisent les mouvements verticaux ascendants. Un comportement sous forme de crochet, qui décrit une augmentation des précipitations jusqu'à un seuil de température, est observé dans la saison estivale avec le MRCC5, mais il a disparu avec les simulations du MRCC6, ce qui pourrait être une conséquence d’avoir seulement une année de simulation disponible ou bien d’une conséquence de la très haute résolution du modèle sur les intervalles de température et sur les effets locaux. En conclusion, l'applicabilité de la relation de CC ne doit pas être généralisée quant à l’étude des précipitations extrêmes, il est également important de considérer l'échelle temporelle, la résolution du modèle utilisé et la saison de l'année. L’évolution de cette relation de CC devrait être évaluée avec des simulations à très haute résolution spatiale (version en développement au centre ESCER), et pour d’autres zones climatiques, sachant que les intervalles de températures et les effets locaux exercent un rôle majeur sur les occurrences et les intensités des fortes précipitations. Ces éléments sont essentiels à intégrer dans le contexte des changements climatiques, en raison des conséquences associées aux fortes précipitations, notamment sur l’occurrence des inondations. _____________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Clausius-Clapeyron, évènements extrêmes, aléas météorologiques, risques d’inondation, changements climatiques
-
Climate change is likely to affect windthrow risks at northern latitudes by potentially changing high wind probabilities and soil frost duration. Here, we evaluated the effect of climate change on windthrow risk in eastern Canada’s balsam fir (Abies balsamea [L.] Mill.) forests using a methodology that accounted for changes in both wind speed and soil frost duration. We used wind speed and soil temperature projections at the regional scale from the CRCM5 regional climate model (RCM) driven by the CanESM2 global climate model (GCM) under two representative concentration pathways (RCP4.5, RCP8.5), for a baseline (1976–2005) and two future periods (2041–2070, 2071–2100). A hybrid mechanistic model (ForestGALES) that considers species resistance to uprooting and wind speed distribution was used to calculate windthrow risk. An increased risk of windthrow (3 to 30%) was predicted for the future mainly due to an increased duration of unfrozen soil conditions (by up to 2 to 3 months by the end of the twenty-first century under RCP8.5). In contrast, wind speed did not vary markedly with a changing climate. Strong regional variations in wind speeds translated into regional differences in windthrow risk, with the easternmost region (Atlantic provinces) having the strongest winds and the highest windthrow risk. Because of the inherent uncertainties associated with climate change projections, especially regarding wind climate, further research is required to assess windthrow risk from the optimum combination of RCM/GCM ensemble simulations.
-
This study analyzes the uncertainty of seasonal (winter and summer) precipitation extremes as simulated by a recent version of the Canadian Regional Climate Model (CRCM) using 16 simulations (1961–1990), considering four sources of uncertainty from: (a) the domain size, (b) the driving Atmosphere–Ocean Global Climate Models (AOGCM), (c) the ensemble member for a given AOGCM and (d) the internal variability of the CRCM. These 16 simulations are driven by 2 AOGCMs (i.e. CGCM3, members 4 and 5, and ECHAM5, members 1 and 2), and one set of re-analysis products (i.e. ERA40), using two domain sizes (AMNO, covering all North America and QC, a smaller domain centred over the Province of Québec). In addition to the mean seasonal precipitation, three seasonal indices are used to characterize different types of variability and extremes of precipitation: the number of wet days, the maximum number of consecutive dry days, and the 95th percentile of daily precipitation. Results show that largest source of uncertainty in summer comes from the AOGCM selection and the choice of domain size, followed by the choice of the member for a given AOGCM. In winter, the choice of the member becomes more important than the choice of the domain size. Simulated variance sensitivity is greater in winter than in summer, highlighting the importance of the large-scale circulation from the boundary conditions. The study confirms a higher uncertainty in the simulated heavy rainfall than the one in the mean precipitation, with some regions along the Great Lakes—St-Lawrence Valley exhibiting a systematic higher uncertainty value.
-
In the context of global warming, the Clausius–Clapeyron (CC) relationship has been widely used as an indicator of the evolution of the precipitation regime, including daily and sub-daily extremes. This study aims to verify the existence of links between precipitation extremes and 2 m air temperature for the Ottawa River Basin (ORB, Canada) over the period 1981–2010, applying an exponential relationship between the 99th percentile of precipitation and temperature characteristics. Three simulations of the Canadian Regional Climate Model version 5 (CRCM5), at three different resolutions (0.44°, 0.22°, and 0.11°), one simulation using the recent CRCM version 6 (CRCM6) at “convection-permitting” resolution (2.5 km), and two reanalysis products (ERA5 and ERA5-Land) were used to investigate the CC scaling hypothesis that precipitation increases at the same rate as the atmospheric moisture-holding capacity (i.e., 6.8%/°C). In general, daily precipitation follows a lower rate of change than the CC scaling with median values between 2 and 4%/°C for the ORB and with a level of statistical significance of 5%, while hourly precipitation increases faster with temperature, between 4 and 7%/°C. In the latter case, rates of change greater than the CC scaling were even up to 10.2%/°C for the simulation at 0.11°. A hook shape is observed in summer for CRCM5 simulations, near the 20–25 °C temperature threshold, where the 99th percentile of precipitation decreases with temperature, especially at higher resolution with the CRCM6 data. Beyond the threshold of 20 °C, it appears that the atmospheric moisture-holding capacity is not the only determining factor for generating precipitation extremes. Other factors need to be considered, such as the moisture availability at the time of the precipitation event, and the presence of dynamical mechanisms that increase, for example, upward vertical motion. As mentioned in previous studies, the applicability of the CC scaling should not be generalised in the study of precipitation extremes. The time and spatial scales and season are also dependent factors that must be taken into account. In fact, the evolution of precipitation extremes and temperature relationships should be identified and evaluated with very high spatial resolution simulations, knowing that local temperature and regional physiographic features play a major role in the occurrence and intensity of precipitation extremes. As precipitation extremes have important effects on the occurrence of floods with potential deleterious damages, further research needs to explore the sensitivity of projections to resolution with various air temperature and humidity thresholds, especially at the sub-daily scale, as these precipitation types seem to increase faster with temperature than with daily-scale values. This will help to develop decision-making and adaptation strategies based on improved physical knowledge or approaches and not on a single assumption based on CC scaling.
-
Among natural-disaster risks, heat waves are responsible for a large number of deaths, diseases and economic losses around the world. As they will increase in severity, duration and frequency over the decades to come within the context of climate change, these extreme events constitute a genuine danger to human health, and heat-warning systems are strongly recommended by public health authorities to reduce this risk of diseases and of excessive mortality and morbidity. Thus, evidence-based public alerting criteria are needed to reduce impacts on human health before and during persistent hot weather conditions. The goal of this guide is to identify alert thresholds for heat waves in Canada based on evidence, and to propose an approach for better defining heat waves in the Canadian context in order to reduce the risks to human health and contribute to the well-being of Canadians. This guide is the result of the collaboration among various research and public institutions working on: 1) meteorological and climate aspects, i.e. the Meteorological Service of Canada (MSC, Environment and Climate Change Canada), and the ESCER centre at the Universite du Quebec a Montreal, and 2) public health, i.e. Health Canada and the Institut National de Sante Publique du Quebec.
-
The paper describes the development of predictive equations of windthrow for five tree species based on remote sensing of wind-affected stands in southwestern New Brunswick (NB). The data characterises forest conditions before, during and after the passing of extratropical cyclone Arthur, July 4–5, 2014. The five-variable logistic function developed for balsam fir (bF) was validated against remote-sensing-acquired windthrow data for bF-stands affected by the Christmas Mountains windthrow event of November 7, 1994. In general, the prediction of windthrow in the area agreed fairly well with the windthrow sites identified by photogrammetry. The occurrence of windthrow in the Christmas Mountains was prominent in areas with shallow soils and prone to localised accelerations in mean and turbulent airflow. The windthrow function for bF was subsequently used to examine the future impact of windthrow under two climate scenarios (RCP’s 4.5 and 8.5) and species response to local changes anticipated with global climate change, particularly with respect to growing degree-days and soil moisture. Under climate change, future windthrow in bF stands (2006–2100) is projected to be modified as the species withdraws from the high-elevation areas and NB as a whole, as the climate progressively warms and precipitation increases, causing the growing environment of bF to deteriorate.
-
Semantic Scholar extracted view of "CLIMATE VARIABILITY AND CHANGE IN CANADA" by E. Barrow et al.