Votre recherche
Résultats 3 ressources
-
Global warming is expected to affect both the frequency and severity of extreme weather events, though projections of the response of these events to climate warming remain highly uncertain. The range of changes reported in the climate modelling literature is very large, sometimes leading to contradictory results for a given extreme weather event. Much of this uncertainty stems from the incomplete understanding of the physics of extreme weather processes, the lack of representation of mesoscale processes in coarse-resolution climate models, and the effect of natural climate variability at multi-decadal time scales. However, some of the spread in results originates simply from the variety of scenarios for future climate change used to drive climate model simulations, which hampers the ability to make generalizations about predicted changes in extreme weather events. In this study, we present a meta-analysis of the literature on projected future extreme weather events in order to quantify expected changes in weather extremes as a function of a common metric of global mean temperature increases. We find that many extreme weather events are likely to be significantly affected by global warming. In particular, our analysis indicates that the overall frequency of global tropical cyclones could decrease with global warming but that the intensity of these storms, as well as the frequency of the most intense cyclones could increase, particularly in the northwestern Pacific basin. We also found increases in the intensity of South Asian monsoonal rainfall, the frequency of global heavy precipitation events, the number of North American severe thunderstorm days, North American drought conditions, and European heatwaves, with rising global mean temperatures. In addition, the periodicity of the El Niño–Southern Oscillation may decrease, which could, in itself, influence extreme weather frequency in many areas of the climate system.
-
Abstract. During the last decade, most European countries have produced hazard maps of natural hazards, but little is known about how to communicate these maps most efficiently to the public. In October 2011, Zurich's local authorities informed owners of buildings located in the urban flood hazard zone about potential flood damage, the probability of flood events and protection measures. The campaign was based on the assumptions that informing citizens increases their risk awareness and that citizens who are aware of risks are more likely to undertake actions to protect themselves and their property. This study is intended as a contribution to better understand the factors that influence flood risk preparedness, with a special focus on the effects of such a one-way risk communication strategy. We conducted a standardized mail survey of 1500 property owners in the hazard zones in Zurich (response rate main survey: 34 %). The questionnaire included items to measure respondents' risk awareness, risk preparedness, flood experience, information-seeking behaviour, knowledge about flood risk, evaluation of the information material, risk acceptance, attachment to the property and trust in local authorities. Data about the type of property and socio-demographic variables were also collected. Multivariate data analysis revealed that the average level of risk awareness and preparedness was low, but the results confirmed that the campaign had a statistically significant effect on the level of preparedness. The main influencing factors on the intention to prepare for a flood were the extent to which respondents evaluated the information material positively as well as their risk awareness. Respondents who had never taken any previous interest in floods were less likely to read the material. For future campaigns, we therefore recommend repeated communication that is tailored to the information needs of the target population.