Votre recherche
Résultats 11 ressources
-
Rivers inherently show heterogeneous sediment sizes and can also show a strong sediment supply variability in time because of natural episodic events or as a consequence of human activities, which alter the characteristics and dynamics of alluvial bars at the macro-scale. The impact of the combination between sediment size heterogeneity and sediment supply variation, or even with other forcings (i.e. hydrology, channel geometry) remains poorly documented. In this work, a physics-based numerical model is applied on a trained reach of a sandy-gravel bed river to investigate the combination of these parameters on bar morphodynamics. The morphodynamic computations are performed with a two-dimensional depth-averaged hydrodynamic solver, internally coupled to a sediment transport and bed evolution module, which estimate the transport of graded sediment and model bed stratigraphy, respectively. A 1 km long reach of the Loire River at Bréhémont (France) is selected to conduct the numerical investigations. The interaction between several forcing mechanisms induces highly complex bar morphodynamic processes in this area.A comprehensive set of high-definition data is available, which allows to study the river morphodynamics for a succession of three flooding events and a period of low flows. Based on this model, a variety of scenarios is presented with the aim of exploring the implications of sediment gradation, geometrical and boundary forcing effects on in situ bars morphodynamics.
-
When analysing flood risk governance in France since the beginning of the 1980s, central government appears as a predominant actor. However, to understand contemporary French flood risk governance ( FRG ), it is also important to highlight how this domination has progressively been undermined since 1982. First, a decentralisation movement has been initiated whose main characteristics are an increasing involvement of local governments and a difficulty for national authorities to maintain their predominant role. The second main change is a diversification in flood risk strategies going together with a diversification in the definition of the flood risk issue. FRG is not a sole matter of protection through defence, preparation, and recovery strategies anymore. Both prevention and mitigation strategies have progressively gained in legitimacy. It is in the latter that local governments and stakeholders have increasingly got involved and have taken up responsibilities and initiatives. The paper focuses on the explanatory factors behind both stability and change, and especially on the ongoing tension, between path dependency factors (i.e. state power and role) and organisational capability of local actors.
-
This paper investigates local-scale social vulnerability to flood hazards in Romania, aiming to identify the most vulnerable social and demographic groups across a wide range of geographical locations by considering three dimensions: demographic, socioeconomic, and the built environment. The purpose of the paper is threefold: first, it strives to improve the Social Vulnerability model (SoVI®) by applying a different weighting method adapted to the Romanian context, taking into consideration the municipalities exposed to flood movements. Second, it aims to develop an assessment model for the most vulnerable communities by measuring the heterogeneity according to local indicators related to disaster risks. Third, it aims to facilitate emergency managers to identify community sub-groups that are more susceptible to loss and to increase the resilience of local communities. To perform local-level vulnerability mapping, 28 variables were selected and three aggregated indexes were constructed with the help of the ArcGIS software. Moreover, a model of Geographically Weighted Regression (GWR) between communities directly affected by floods and localities with high- and very high values of the Local Social Vulnerability Index (LoSoVI) was used to explore the spatial relationship among them and to compare the appropriateness of Ordinary Least Square (OLS) and GWR for such modelling. The established GWR model has revealed that the negative effects of flood hazards are often associated with communities with a high degree of social vulnerability. Thus, the analysis is able to provide a more comprehensive picture on communities in desperate need of financial resources in order to have the ability to diminish the negative impacts of flood hazards and to provide a more sustainable society.
-
Mapping the delineation of areas that are flooded due to water control infrastructure failure is a critical issue. Practical difficulties often present challenges to the accurate and effective analysis of dam-break hazard areas. Such studies are expensive, lengthy, and require large volumes of incoming data and refined technical skills. The creation of cost-efficient geospatial tools provides rapid and inexpensive estimates of instantaneous dam-break (due to structural failure) flooded areas that complement, but do not replace, the results of hydrodynamic simulations. The current study implements a Geographic Information System (GIS) based method that can provide useful information regarding the delineation of dam-break flood-prone areas in both data-scarce environments and transboundary regions, in the absence of detailed studies. Moreover, the proposed tool enables, without advanced technical skills, the analysis of a wide number of case studies that support the prioritization of interventions, or, in emergency situations, the simulation of numerous initial hypotheses (e.g., the modification of initial water level/volume in the case of limited dam functionality), without incurring high computational time. The proposed model is based on the commonly available data for masonry dams, i.e., dam geometry (e.g., reservoir capacity, dam height, and crest length), and a Digital Elevation Model. The model allows for rapid and cost-effective dam-break hazard mapping by evaluating three components: (i) the dam-failure discharge hydrograph, (ii) the propagation of the flood, and (iii) the delineation of flood-prone areas. The tool exhibited high accuracy and reliability in the identification of hypothetical dam-break flood-prone areas when compared to the results of traditional hydrodynamic approaches, as applied to a dam in Basilicata (Southern Italy). In particular, the over- and under-estimation rates of the proposed tool, for the San Giuliano dam, Basilicata, were evaluated by comparing its outputs with flood inundation maps that were obtained by two traditional methods whil using a one-dimensional and a two-dimensional propagation model, resulting in a specificity value of roughly 90%. These results confirm that most parts of the flood map were correctly classified as flooded by the proposed GIS model. A sensitivity value of over 75% confirms that several zones were also correctly identified as non-flooded. Moreover, the overall effectiveness and reliability of the proposed model were evaluated, for the Gleno Dam (located in the Central Italian Alps), by comparing the results of literature studies concerning the application of monodimensional numerical models and the extent of the flooded area reconstructed by the available historical information, obtaining an accuracy of around 94%. Finally, the computational efficiency of the proposed tool was tested on a demonstrative application of 250 Italian arch and gravity dams. The results, when carried out using a PC, Pentium Intel Core i5 Processor CPU 3.2 GHz, 8 GB RAM, required about 73 min, showing the potential of such a tool applied to dam-break flood mapping for a large number of dams.