Votre recherche
Résultats 12 ressources
- 
            
        
Floods pose a substantial risk to human well-being. These risks encompass economic losses, infrastructural damage, disruption of daily life, and potential loss of life. This study presents a state-wide and county-level spatial exposure assessment of the Iowa railway network, emphasizing the resilience and reliability of essential services during such disasters. In the United States, the railway network is vital for the distribution of goods and services. This research specifically targets the railway network in Iowa, a state where the impact of flooding on railways has not been extensively studied. We employ comprehensive GIS analysis to assess the vulnerability of the railway network, bridges, rail crossings, and facilities under 100- and 500-year flood scenarios at the state level. Additionally, we conducted a detailed investigation into the most flood-affected counties, focusing on the susceptibility of railway bridges. Our state-wide analysis reveals that, in a 100-year flood scenario, up to 9% of railroads, 8% of rail crossings, 58% of bridges, and 6% of facilities are impacted. In a 500-year flood scenario, these figures increase to 16%, 14%, 61%, and 13%, respectively. Furthermore, our secondary analysis using flood depth maps indicates that approximately half of the railway bridges in the flood zones of the studied counties could become non-functional in both flood scenarios. These findings are crucial for developing effective disaster risk management plans and strategies, ensuring adequate preparedness for the impacts of flooding on railway infrastructure. © 2025 by the authors.
 - 
            
        
Abstract. Developing predictions of coastal flooding risk on subseasonal timescales (2–6 weeks in advance) is an emerging priority for the National Oceanic and Atmospheric Administration (NOAA). In this study, we assess the ability of two current operational forecast systems, the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS) and the Centre National de Recherches Météorologiques climate model (CNRM), to make subseasonal ensemble predictions of the non-tidal residual component of coastal water levels at United States coastal gauge stations for the period 2000–2019. These models were chosen because they assimilate satellite altimetry at forecast initialization and attempt to predict the mean sea level, including a global mean component whose absence in other forecast systems complicates assessment of tide gauge reforecast skill. Both forecast systems have skill that exceeds damped persistence for forecast leads through 2–3 weeks, with IFS skill exceeding damped persistence for leads up to 6 weeks. Post-processing forecasts to include the inverse barometer effect, derived from mean sea level pressure forecasts, improves skill for relatively short forecast leads (1–3 weeks). Accounting for vertical land motion of each gauge primarily improves skill for longer leads (3–6 weeks), especially for the Alaskan and Gulf coasts; sea-level trends contribute to reforecast skill for both model and persistence forecasts, primarily for the East and Gulf coasts. Overall, we find that current forecast systems have sufficiently high levels of deterministic and probabilistic skill to be used in support of operational coastal flood guidance on subseasonal timescales.
 - 
            
        
Coastal high tide flooding doubled in the U.S. between 2000 and 2022 and sea level rise (SLR) due to climate change will dramatically increase exposure and vulnerability to flooding in the future. However, standards for elevating buildings in flood hazard areas, such as base flood elevations set by the Federal Emergency Management Agency, are based on historical flood data and do not account for future SLR. To increase flood resilience in flood hazard areas, federal, state, regional, and municipal planning initiatives are developing guidance to increase elevation requirements for occupied spaces in buildings. However, methods to establish a flood elevation that specifically accounts for rising sea levels (or sea level rise-adjusted design flood elevation (SLR-DFE)) are not standardized. Many municipalities or designers lack clear guidance on developing or incorporating SLR-DFEs. This study compares guidance documents, policies, and methods for establishing an SLR-DFE. The authors found that the initiatives vary in author, water level measurement starting point, SLR scenario and timeframe, SLR adjustment, freeboard, design flood elevation, application (geography and building type), and whether it is required or recommended. The tables and graph compare the different initiatives, providing a useful summary for policymakers and practitioners to develop SLR-DFE standards. © 2025 by the authors.
 - 
            
        
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).
 - 
            
        
The increasing threats of global flood risk mandate rapid and accurate high-resolution flood modeling strategies over large scales. In the United States, the National Oceanic and Atmospheric Administration (NOAA) Office of Water Prediction (OWP) has operationalised a Flood Inundation Mapping (FIM) framework utilising the Height Above Nearest Drainage (HAND)-Synthetic Rating Curve (SRC) approach. It translates streamflow into stage and subsequently maps the inundation over the floodplain. It is a low-fidelity FIM framework, suitable for large-scale applications with much less computational effort. The SRCs are calculated for each river segment using Manning's equation; however, uncertainty in Manning's parameters and missing bathymetry impart bias in SRC calculation, and thus in FIM. An SRC adjustment factor (λsrc), introduced by OWP, calibrates SRCs against USGS rating curves, HEC-RAS 1D rating curves, and National Weather Service (NWS)-Categorical Flood Inundation Mapping (CatFIM) locations. Adjusted SRCs improve the FIM predictions but are limited to locations with the above data sources. In this paper, we develop machine learning models to predict the λsrc over the entire United States river network. Results show that the eXtreme Gradient Boosting model yielded the strongest predictability, with an R2 of 0.70. The impact of λsrc on FIM predictions is evaluated for Hurricane Matthew in North Carolina and synthetic flood events in 15 watersheds. For Hurricane Matthew flooding, the mean percentage improvements in Critical Success Index (CSI), Probability of Detection (POD), and F1 Score are 17.5%, 20% and 12.5%, while for synthetic events, the improvements are 2.59%, 4.93%, and 3.03%, respectively. © 2025 The Author(s)
 - 
            
        
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study presents a novel approach that uses rainfall data from five dynamically and statistically downscaled (DD and SD) global climate models under two scenarios to visualize a potential future extent of flooding in ENC. Here, we use DD data (at 36-km grid spacing) to compute future changes in precipitation intensity–duration–frequency (PIDF) curves at the end of the 21st century. These PIDF curves are further applied to observed rainfall from Hurricane Matthew—a landfalling storm that created widespread flooding across ENC in 2016—to project versions of “Matthew 2100” that reflect changes in extreme precipitation under those scenarios. Each Matthew-2100 rainfall distribution was then used in hydrologic models (HEC-HMS and HEC-RAS) to simulate “2100” discharges and flooding extents in the Neuse River Basin (4686 km2) in ENC. The results show that DD datasets better represented historical changes in extreme rainfall than SD datasets. The projected changes in ENC rainfall (up to 112%) exceed values published for the U.S. but do not exceed historical values. The peak discharges for Matthew-2100 could increase by 23–69%, with 0.4–3 m increases in water surface elevation and 8–57% increases in flooded area. The projected increases in flooding would threaten people, ecosystems, agriculture, infrastructure, and the economy throughout ENC. © 2025 by the authors.
 - 
            
        
During and after a disaster, selected services and systems are needed to recover and maintain important functions of society. These are deemed critical infrastructure (CI). When these services are disrupted due to the impacts of a disaster, response and recovery may be slowed or halted. As flooding events are occurring more often across larger geographic extents, advancing methods for assessing risks of flooding to CI is vital. We use Utah, USA as a case study to demonstrate a novel, transferable approach for assessing fine-scale flood risks to CI across large geographic areas. Specifically, our assessment approach integrates high-resolution building footprints of schools, first responder facilities, and hospitals, and flood risk maps from a state-of-the-art big data flood model and the U.S. Federal Emergency Management Agency (FEMA). We show that 94 CI facilities across Utah are at risk of severe flooding, and that those risks to CI are almost entirely overlooked by FEMA flood risk maps. Though nearly every CI building is located outside of FEMA flood zones, FEMA maps inaccurately and incompletely represent flood risks, indicating that future flood risk assessment approaches should use flood risk maps from other sources. The approach we introduce can be used to assess flood risks to CI elsewhere, and case study results can be applied to inform flood risk reduction efforts in Utah. © 2025 Elsevier Ltd
 - 
            
        
Abstract Over the past 20 years, the Hydrological Ensemble Prediction Experiment (HEPEX) international community of practice has advanced the science and practice of hydrological ensemble prediction and its application in impact- and risk-based decision-making, fostering innovations through cutting-edge techniques and data that enhance water-related sectors. Here, we present insights from those 20 years on the key priorities for (co)creating broadly applicable hydrological forecasting systems that add value across spatial scales and time horizons. We highlight the advancement of hydrological forecasting chains through rigorous data management that incorporates diverse, high-quality data sources, data assimilation techniques, and the application of artificial intelligence (AI) to improve predictive accuracy. HEPEX has played a critical role in enhancing the reliability of water resources and water-related risk management globally by standardizing ensemble forecasting. This effort complements HEPEX’s broader initiative to strengthen research to operations, making innovative forecasting solutions both practical and accessible. Additionally, efforts have been made toward supporting the United Nations Early Warnings for All initiative through developing robust and reliable early warning systems by means of global training, education and capacity development, and the sharing of technology. Finally, we note that the integration of advanced science, user-centric methods, and global collaboration can provide a solid framework for improving the prediction and management of hydrological extremes, aligning forecasting systems with the dynamic needs of water resource and risk management in a changing climate. To effectively meet future demands, it is crucial to accelerate the integration of innovative science within operational frameworks, fostering adaptable and resilient hydrological forecasting systems globally.
 - 
            
        
ABSTRACT Urbanization is leading to more frequent flooding as cities have more impervious surfaces and runoff exceeds the capacity of combined sewer systems. In heavy rainfall, contaminated excess water is discharged into the natural environment, damaging ecosystems and threatening drinking water sources. To address these challenges aggravated by climate change, urban blue-green water management systems, such as bioretention cells, are increasingly being adopted. Bioretention cells use substrate and plants adapted to the climate to manage rainwater. They form shallow depressions, allowing infiltration, storage, and gradual evacuation of runoff. In 2018, the City of Trois-Rivières (Québec, Canada) installed 54 bioretention cells along a residential street, several of which were equipped with access points to monitor performance. Groundwater quality was monitored through the installation of piezometers to detect potential contamination. This large-scale project aimed to improve stormwater quality and reduce sewer flows. The studied bioretention cells reduced the flow and generally improved water quality entering the sewer system, as well as the quality of stormwater, with some exceptions. Higher outflow concentrations were observed for contaminants such as manganese and nitrate. The results of this initiative provide useful recommendations for similar projects for urban climate change adaptation.
 - 
            
        
Abstract. Dissolved organic carbon (DOC) trends, predominantly showing long-term increases in concentration, have been observed across many regions of the Northern Hemisphere. Elevated DOC concentrations are a major concern for drinking water treatment plants, owing to the effects of disinfection byproduct formation, the risk of bacterial regrowth in water distribution systems, and treatment cost increases. Using a unique 30-year data set encompassing both extreme wet and dry conditions in a eutrophic drinking water reservoir in the Great Plains of North America, we investigate the effects of changing source-water and in-lake water chemistry on DOC. We employ novel wavelet coherence analyses to explore the coherence of changes in DOC with other environmental variables and apply a generalized additive model to understand predictor–DOC responses. We found that the DOC concentration was significantly coherent with (and lagging behind) flow from a large upstream mesotrophic reservoir at long (> 18-month) timescales. DOC was also coherent with (lagging behind) sulfate and in phase with total phosphorus, ammonium, and chlorophyll a concentrations at short (≤ 18-month) timescales across the 30-year record. These variables accounted for 56 % of the deviance in DOC from 1990 to 2019, suggesting that water-source and in-lake nutrient and solute chemistry are effective predictors of the DOC concentration. Clearly, climate and changes in water and catchment management will influence source-water quality in this already water-scarce region. Our results highlight the importance of flow management to shallow eutrophic reservoirs; wet periods can exacerbate water quality issues, and these effects can be compounded by reducing inflows from systems with lower DOC. These flow management decisions address water level and flood risk concerns but also have important impacts on drinking water treatability.
 - 
            
        
Abstract The flood-prone Saint John River (SJR, Wolastoq), which lies within a drainage basin of 55 110 km 2 , flows a length of 673 km from its source in northern Maine, United States, to its mouth in southern New Brunswick, Canada. Major industries in the basin include forestry, agriculture, and hydroelectric power. During the 1991–2020 reference period, the SJR basin (SJRB) experienced major spring flood events in 2008, 2018, and 2019. As part of the Saint John River Experiment on Cold Season Storms, the objective of this research is to characterize and contrast these three major spring flood events. Given that the floods all occurred during spring, the hypothesis being tested is that rapid snowmelt alone is the dominant driver of flooding in the SJRB. There were commonalities and differences regarding the contributing factors of the three flood years. When averaged across the upper basin, they showed consistency in terms of positive winter and spring total precipitation anomalies, positive snow water equivalent anomalies, and steep increases in April cumulative runoff. Rain-on-snow events were a prominent feature of all three flood years. However, differences between flood years were also evident, including inconsistencies with respect to ice jams and high tides. Certain factors were present in only one or two of the three flood years, including positive total precipitation anomalies in spring, positive heavy liquid precipitation anomalies in spring, positive heavy solid precipitation anomalies in winter, and positive temperature anomalies in spring. The dominant factor contributing to peak water levels was rapid snowmelt.