Votre recherche
Résultats 38 ressources
-
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).
-
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study presents a novel approach that uses rainfall data from five dynamically and statistically downscaled (DD and SD) global climate models under two scenarios to visualize a potential future extent of flooding in ENC. Here, we use DD data (at 36-km grid spacing) to compute future changes in precipitation intensity–duration–frequency (PIDF) curves at the end of the 21st century. These PIDF curves are further applied to observed rainfall from Hurricane Matthew—a landfalling storm that created widespread flooding across ENC in 2016—to project versions of “Matthew 2100” that reflect changes in extreme precipitation under those scenarios. Each Matthew-2100 rainfall distribution was then used in hydrologic models (HEC-HMS and HEC-RAS) to simulate “2100” discharges and flooding extents in the Neuse River Basin (4686 km2) in ENC. The results show that DD datasets better represented historical changes in extreme rainfall than SD datasets. The projected changes in ENC rainfall (up to 112%) exceed values published for the U.S. but do not exceed historical values. The peak discharges for Matthew-2100 could increase by 23–69%, with 0.4–3 m increases in water surface elevation and 8–57% increases in flooded area. The projected increases in flooding would threaten people, ecosystems, agriculture, infrastructure, and the economy throughout ENC. © 2025 by the authors.
-
During and after a disaster, selected services and systems are needed to recover and maintain important functions of society. These are deemed critical infrastructure (CI). When these services are disrupted due to the impacts of a disaster, response and recovery may be slowed or halted. As flooding events are occurring more often across larger geographic extents, advancing methods for assessing risks of flooding to CI is vital. We use Utah, USA as a case study to demonstrate a novel, transferable approach for assessing fine-scale flood risks to CI across large geographic areas. Specifically, our assessment approach integrates high-resolution building footprints of schools, first responder facilities, and hospitals, and flood risk maps from a state-of-the-art big data flood model and the U.S. Federal Emergency Management Agency (FEMA). We show that 94 CI facilities across Utah are at risk of severe flooding, and that those risks to CI are almost entirely overlooked by FEMA flood risk maps. Though nearly every CI building is located outside of FEMA flood zones, FEMA maps inaccurately and incompletely represent flood risks, indicating that future flood risk assessment approaches should use flood risk maps from other sources. The approach we introduce can be used to assess flood risks to CI elsewhere, and case study results can be applied to inform flood risk reduction efforts in Utah. © 2025 Elsevier Ltd
-
Les événements météorologiques extrêmes (EME) et les désastres qu’ils entrainent provoquent des conséquences psychosociales qui sont modulées en fonction de différents facteurs sociaux. On constate aussi que les récits médiatiques et culturels qui circulent au sujet des EME ne sont pas représentatifs de l’ensemble des expériences de personnes sinistrées : celles qui en subissent les conséquences les plus sévères tendent aussi à être celles qu’on « entend » le moins dans l’espace public. Ces personnes sont ainsi susceptibles de vivre de l’injustice épistémique, ce qui a des effets délétères sur le soutien qu’elles reçoivent. Face à ces constats s’impose la nécessité de mieux comprendre la diversité des expériences d’EME et d’explorer des stratégies pour soutenir l’ensemble des personnes sinistrées dans leur rétablissement psychosocial. Cet article soutient que la recherche narrative peut contribuer à répondre à ces objectifs. En dépeignant des réalités multiples, la recherche narrative centrée sur les récits de personnes sinistrées présente aussi un intérêt significatif pour l’amélioration des pratiques d’intervention en contexte de désastre. , Extreme weather events (EWE) and their resulting disasters cause psychosocial consequences that are moderated by different social factors. Media and cultural accounts of EWEs do not represent the full range of disaster survivor experiences, that is, those who experienced the most severe consequences also tend to be those least “heard” in the public arena. These people are therefore most likely to experience forms of epistemic injustice that negatively impact the support offered to cope with disaster. Considering these findings, there is a need to better understand the diversity of EWE experiences and explore strategies for supporting all disaster survivors in their psychosocial recovery. This article argues that narrative research can help meet these needs. By portraying the multiple realities of people affected by EWEs, narrative research focusing on the stories of disaster survivors is also of significant interest for improving intervention practices in this context.
-
Abstract Over the past 20 years, the Hydrological Ensemble Prediction Experiment (HEPEX) international community of practice has advanced the science and practice of hydrological ensemble prediction and its application in impact- and risk-based decision-making, fostering innovations through cutting-edge techniques and data that enhance water-related sectors. Here, we present insights from those 20 years on the key priorities for (co)creating broadly applicable hydrological forecasting systems that add value across spatial scales and time horizons. We highlight the advancement of hydrological forecasting chains through rigorous data management that incorporates diverse, high-quality data sources, data assimilation techniques, and the application of artificial intelligence (AI) to improve predictive accuracy. HEPEX has played a critical role in enhancing the reliability of water resources and water-related risk management globally by standardizing ensemble forecasting. This effort complements HEPEX’s broader initiative to strengthen research to operations, making innovative forecasting solutions both practical and accessible. Additionally, efforts have been made toward supporting the United Nations Early Warnings for All initiative through developing robust and reliable early warning systems by means of global training, education and capacity development, and the sharing of technology. Finally, we note that the integration of advanced science, user-centric methods, and global collaboration can provide a solid framework for improving the prediction and management of hydrological extremes, aligning forecasting systems with the dynamic needs of water resource and risk management in a changing climate. To effectively meet future demands, it is crucial to accelerate the integration of innovative science within operational frameworks, fostering adaptable and resilient hydrological forecasting systems globally.
-
ABSTRACT Urbanization is leading to more frequent flooding as cities have more impervious surfaces and runoff exceeds the capacity of combined sewer systems. In heavy rainfall, contaminated excess water is discharged into the natural environment, damaging ecosystems and threatening drinking water sources. To address these challenges aggravated by climate change, urban blue-green water management systems, such as bioretention cells, are increasingly being adopted. Bioretention cells use substrate and plants adapted to the climate to manage rainwater. They form shallow depressions, allowing infiltration, storage, and gradual evacuation of runoff. In 2018, the City of Trois-Rivières (Québec, Canada) installed 54 bioretention cells along a residential street, several of which were equipped with access points to monitor performance. Groundwater quality was monitored through the installation of piezometers to detect potential contamination. This large-scale project aimed to improve stormwater quality and reduce sewer flows. The studied bioretention cells reduced the flow and generally improved water quality entering the sewer system, as well as the quality of stormwater, with some exceptions. Higher outflow concentrations were observed for contaminants such as manganese and nitrate. The results of this initiative provide useful recommendations for similar projects for urban climate change adaptation.
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Questions have been raised about the correctness of water quality models with complete mixing assumptions in cross junctions of water distribution systems. Recent developments in the mixing phenomenon within cross junctions of water distribution networks (WDNs) have heightened the need for evaluating the existing incomplete mixing models under real-world conditions. Therefore, in this study, two cross junctions with pipe diameters of 100 Â 100 Â 100 Â 100 mm and 150 Â 150 Â 150 Â 150 mm were employed in laboratory experiments to evaluate six existing incomplete mixing models for 25 flow rate scenarios ranging between 1.5 and 3.0 L/s. It was observed that within the same flow rate scenario, the degree of mixing in a cross junction with a pipe relative roughness of 6.00 Â 10À5 (pipe diameter of 25 mm) was higher than that in a cross junction with a pipe relative roughness of 3.00 Â 10À5 (pipe diameter of 50 mm) and smaller. Considering the real-world size of pipes in evaluating the incomplete mixing models showed that two incomplete mixing models, AZRED and the one by Shao et al., had the best accordance with the results of the laboratory experiments.
-
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
-
This paper presents a new framework for floodplain inundation modeling in an ungauged basin using unmanned aerial vehicles (UAVs) imagery. This method is based on the integrated analysis of high-resolution ortho-images and elevation data produced by the structure from motion (SfM) technology. To this end, the Flood-Level Marks (FLMs) were created from high-resolution UAV ortho-images and compared to the flood inundated areas simulated using the HEC-RAS hydraulic model. The flood quantiles for 25, 50, 100, and 200 return periods were then estimated by synthetic hydrographs using the Natural Resources Conservation Service (NRCS). The proposed method was applied to UAV image data collected from the Khosban village, in Taleghan County, Iran, in the ungauged sub-basin of the Khosban River. The study area is located along one kilometre of the river in the middle of the village. The results showed that the flood inundation areas modeled by the HEC-RAS were 33%, 19%, and 8% less than those estimated from the UAV’s FLMs for 25, 50, and 100 years return periods, respectively. For return periods of 200 years, this difference was overestimated by more than 6%, compared to the UAV’s FLM. The maximum flood depth in our four proposed scenarios of hydraulic models varied between 2.33 to 2.83 meters. These analyses showed that this method, based on the UAV imagery, is well suited to improve the hydraulic modeling for seasonal inundation in ungauged rivers, thus providing reliable support to flood mitigation strategies
-
Geohazards associated with the dynamics of the liquid and solid water of the Earth’s hydrosphere, such as floods and glacial processes, may pose significant risks to populations, activities and properties [...]
-
Les inondations de 2017 et 2019 au Québec ont affecté respectivement 293 et 240 municipalités. Ces inondations ont généré une cascade d’évènements stressants (stresseurs primaires et secondaires) qui ont eu des effets sur la santé mentale de la population et retardé le processus de rétablissement des individus. Cette période de rétablissement peut s’échelonner sur plusieurs mois voire plusieurs années. Cette étude s’inscrit dans la spécificité de la recherche mixte mise de l’avant à travers trois stratégies de recherche, réalisées de façon séquentielle : 1) sondage populationnelle réalisé auprès de 680 personnes, 2) analyse de documents produits par les organisations participant au processus de rétablissement social des sinistrés, ou sur des analyses externes portant sur ces interventions de rétablissement et 3) entrevues semi-dirigées auprès de 15 propriétaires occupants ayant complété une demande d’indemnisation à la suite des inondations de 2019 et auprès de 11 professionnels et gestionnaires participant au processus de rétablissement social. Les entrevues semi-dirigées et les questionnaires complétés par les personnes sinistrées lors des inondations de 2019 démontrent que les principales sources de stress ayant des impacts sur la santé et le bien-être des répondants sont : 1) l’absence d’avertissement et la vitesse de la montée des eaux; 2) l’obligation de se relocaliser et la peur d’être victime de pillage; 3) le manque de solidarité et d’empathie de la part de certains employés du MSP; 4) la gestion des conflits familiaux; 5) la gestion de problèmes de santé nouveaux ou préexistants; 6) la complexité des demandes d’indemnisation; 7) la lourdeur et les délais des travaux de nettoyage ou de restauration; 8) les indemnités inférieures aux coûts engendrés par l’inondation; 9) les pertes matérielles subies, particulièrement ceux d’une valeur de plus de 50 000 $; et 10) la diminution anticipée de la valeur de sa résidence. À cela s’ajoute l’insatisfaction à l’égard du programme d’indemnisation du gouvernement du Québec (PGIAF) qui fait plus que doubler la prévalence des symptômes de stress post-traumatique. Les inondations entraînent également une perte de satisfaction ou de bien-être statistiquement significative. La valeur monétaire de cette perte de jouissance peut être exprimée en équivalent salaires. En moyenne, cette diminution du bien-être équivaut à une baisse de salaire de 60 000$ pour les individus ayant vécu une première inondation et à 100 000$ pour les individus ayant vécu de multiples inondations. Ces résultats suggèrent que les coûts indirects et intangibles représentent une part importante des dommages découlant des inondations. Ce projet de recherche vise également à analyser l’application du PGIAF et son influence sur les stresseurs vécus par les sinistrés dans le contexte de la pandémie de COVID-19. La principale recommandation de cette étude repose sur une analyse de documents, un sondage populationnel et des entrevues semi-dirigées. Ainsi, s’attaquer à la réduction de principaux stresseurs nécessite 1) d’améliorer la gouvernance du risque d’inondation, 2) d’intensifier la communication et le support aux sinistrés, et 3) de revoir les mécanismes d’indemnisation existants.
-
Résumé L'hydrogéomorphologie étudie la dynamique des rivières en se concentrant sur les interactions liant la structure des écoulements, la mobilisation et le transport des sédiments et les morphologies qui caractérisent les cours d'eau et leur bassin‐versant. Elle offre un cadre d'analyse et des outils pour une meilleure intégration des connaissances sur la dynamique des rivières pour la gestion des cours d'eau au sens large, et plus spécifiquement, pour leur restauration, leur aménagement et pour l'évaluation et la prévention des risques liés aux aléas fluviaux. Au Québec, l'hydrogéomorphologie émerge comme contribution significative dans les approches de gestion et d'évaluation du risque et se trouve au cœur d'un changement de paradigme dans la gestion des cours d'eau par lequel la restauration des processus vise à augmenter la résilience des systèmes et des sociétés et à améliorer la qualité des environnements fluviaux. Cette contribution expose la trajectoire de l'hydrogéomorphologie au Québec à partir des publications scientifiques de géographes du Québec et discute des visées de la discipline en recherche et en intégration des connaissances pour la gestion des cours d'eau . , Abstract Hydrogeomorphology studies river dynamics, focusing on the interactions between flow structure, sediment transport, and the morphologies that characterize rivers and their watersheds. It provides an analytical framework and tools for better integrating knowledge of river dynamics into river management in the broadest sense, and more specifically, into river restoration as well as into the assessment and prevention of risks associated with fluvial hazards. In Quebec, hydrogeomorphology is emerging as a significant contribution to risk assessment and management approaches, and is at the heart of a paradigm shift in river management whereby process restoration aims to increase the resilience of fluvial systems and societies, and improve the quality of fluvial environments. This contribution outlines the trajectory of hydrogeomorphology in Quebec, based on scientific publications by Quebec geographers, and discusses the discipline's aims in research and knowledge integration for river management . , Messages clés Les géographes du Québec ont contribué fortement au développement des connaissances et outils de l'hydrogéomorphologie. L'hydrogéomorphologie a évolué d'une science fondamentale à une science où les connaissances fondamentales sont au service de la gestion des cours d'eau. L'hydrogéomorphologie et le cortège de connaissances et d'outils qu'elle promeut font de cette discipline une partenaire clé pour une gestion holistique des cours d'eau.
-
Climate change and more frequent severe storms have caused persistent flooding, storm surges, and erosion in the northeastern coastal region of the United States. These weather-related disasters have continued to generate negative environmental consequences across many communities. This study examined how coastal residents’ exposure to flood risk information and information seeking behavior were related to their threat appraisal, threat-coping efficacy, and participation in community action in the context of building social resilience. A random sample of residents of a coastal community in the Northeastern United States was selected to participate in an online survey (N = 302). Key study results suggested that while offline news exposure was weakly related to flood vulnerability perception, online news exposure and mobile app use were both weakly associated with flood-risk information seeking. As flood vulnerability perception was strongly connected to flood severity perception but weakly linked to lower self-efficacy beliefs, flood severity perception was weakly and moderately associated with response-efficacy beliefs and information seeking, respectively. Furthermore, self-efficacy beliefs, response efficacy beliefs, and flood-risk information seeking were each a weak or moderate predictor of collective efficacy beliefs. Lastly, flood risk information-seeking was a strong predictor and collective efficacy beliefs were a weak predictor of community action for flood-risk management. This study tested a conceptual model that integrated the constructs from risk communication, information seeking, and protection motivation theory. Based on the modeling results reflecting a set of first-time findings, theoretical and practical implications are discussed.
-
Abstract Groundwater quality modelling plays an important role in water resources management decision making processes. Accordingly, models must be developed to account for the uncertainty inherent in the modelling process, from the sample measurement stage through to the data interpretation stages. Artificial intelligence models, particularly fuzzy inference systems (FIS), have been shown to be effective in groundwater quality evaluation for complex aquifers. In the current study, fuzzy set theory is applied to groundwater-quality related decision-making in an agricultural production context; the Mamdani, Sugeno, and Larsen fuzzy logic-based models (MFL, SFL, and LFL, respectively) are used to develop a series of new, generalized, rule-based fuzzy models for water quality evaluation using widely accepted irrigation indices and hydrological data from the Sarab Plain, Iran. Rather than drawing upon physiochemical groundwater quality parameters, the present research employs widely accepted agricultural indices (e.g., irrigation criteria) when developing the MFL, SFL and LFL groundwater quality models. These newly-developed models, generated significantly more consistent results than the United States Soil Laboratory (USSL) diagram, addressed the inherent uncertainty in threshold data, and were effective in assessing groundwater quality for agricultural uses. The SFL model is recommended as it outperforms both MFL and LFL in terms of accuracy when assessing groundwater quality using irrigation indices.
-
Au Québec, les conditions printanières extraordinaires de 2017 et 2019 ont incité le gouvernement provincial à commander une mise à jour des cartes des zones inondables. La plupart des cartes existantes ne reflètent pas adéquatement l’aménagement actuel du territoire, ni l’aléa associé. Généralement, pour la cartographie, les modèles hydrodynamiques tel que HEC-RAS sont utilisés, mais ces outils nécessitent une expertise significative, des données hydrométriques et des relevés bathymétriques à haute résolution. Étant donnée la nécessité de mettre à jour ces cartes tout en réduisant les coûts financiers associés, des méthodes conceptuelles simplifiées ont été développées. Ces approches, y compris l’approche géomatique HAND (Height above the nearest drainage), qui reposent uniquement sur un modèle numérique d’élévation (MNE), sont de plus en plus utilisées. HAND permet de calculer la hauteur d’eau nécessaire pour inonder chaque pixel du MNE selon la différence entre son élévation et celle du pixel du cours d’eau dans lequel il se déverse. Les informations sur la géométrie hydraulique dérivées par HAND ainsi que l’application de l’équation de Manning permettent la construction d’une courbe de tarage synthétique (CTS) pour chaque tronçon de rivière homogène. Dans la littérature, cette méthode a été appliquée pour établir une cartographie de la zone inondable de première instance de grands fleuves aux États-Unis avec un taux de correspondance de 90% par rapport à l’utilisation de HEC-RAS. Elle n’a toutefois pas été appliquée sur de petits bassins versants, car ceux-ci engendrent des défis méthodologiques substantiels. Ce projet s’attaque à ces défis sur deux bassins versants Québécois, ceux des rivières à la Raquette et Delisle. Les conditions frontières des modèles sont dérivées d’un traitement statistique empirique des séries de débits simulés avec le modèle hydrologique HYDROTEL. Étant donnée l’absence de stations météorologiques sur le territoire à l’étude, des chroniques du système Canadien d’Analyse de la précipitation (CaPA) ont été utilisées pour cette modélisation hydrologique. Les résultats de ce projet pointent vers des performances satisfaisantes de l’approche géomatique HAND-CTS en comparaison avec le modèle hydrodynamique HEC-RAS (1D/2D et 2D au complet), avec des taux de correspondance entre les étendues des inondations supérieurs à 60 % pour les bassins versants de Delisle et à la Raquette. Les comparaisons étaient effectuées sur une gamme de débit allant d’un débit de période de retour de 2 ans jusqu’à un débit de plus de 350 ans. On notera que l’application sur la rivière à la Raquette a été développée dans les règles de l’art, incluant un processus de calage développé dans le cadre d’un projet de maitrise en sciences de l’eau connexe à ce mémoire, relativement à la longueur du tronçon, le calage vertical de la CTS en considérant la hauteur d’eau présente dans le cours d’eau lors du relevé LiDAR et sa précision verticale. Les résultats ont montré que le coefficient de précision globale le plus bas était de 98 % pour un débit de 350 ans, avec une précision de plus que 99 % pour les autres périodes de retour, ce qui représente une très bonne performance du modèle. Et par ailleurs, le coefficient de Kappa conditionnel humide variait entre 58 % et 28 %. Alors, que pour la rivière Delisle, l’application se veut naïve, c’est-à-dire sans calage préalable de la méthode HANDCTS. La précision globale a varié entre 83 % et 96 %, ce qui est considéré comme "très approprié" et une variation du coefficient Kappa conditionnel humide de 35,2 à 64,3 %. Alors que pour une différence d’élévations d'eau entre les élévations de référence et simulées, la performance était quantifiée par un RMSE qui variait pour les périodes de retour de 100 ans et de 350 ans respectivement de 4,5 m et de 7,1 m. Enfin, la distribution spatiale des différences d’élévations montre une distribution gaussienne avec une moyenne qui est à peu près égale à 0 où la plupart des erreurs se situent entre -0,34 m et 1,1 m La cartographie des zones inondables dérivée de HAND-CTS présente encore certains défis associés notamment à la présence d’infrastructures urbaines complexes (ex. : ponceaux, ponts et seuils) dont l’influence hydraulique n’est pas considérée. Dans le contexte où l’ensemble du Québec (529 000 km²) dispose d’une couverture LiDAR, les résultats de ce mémoire permettront de mieux comprendre les sources d’incertitude associées à la méthode HAND-CTS tout en démontrant son potentiel pour les bassins versants dépourvus de données bathymétriques et hydrométéorologiques. <br /><br />The 2017 and 2019 extraordinary spring conditions prompted the Quebec government to update flood risk maps, as most of them do not adequately reflect current land use and associated hazard. Generally, hydrodynamic models such as HEC-RAS are used for flood mapping, but they require significant expertise, hydrometric data, and high-resolution bathymetric surveys. Given the need to update these maps while reducing the associated financial costs, simplified conceptual methods have been developed over the last decade. These methods are increasingly used, including HAND (height above the nearest drainage), which relies on a Digital Elevation Model (DEM) to delineate the inundation area given the water height in a river segment. Furthermore, the river geometry derived from HAND data and the application of Manning’s equation allow for the construction of a synthetic rating curve (SRC) for each homogeneous river segment. In the scientific literature, this framework has been applied to produce first-instance floodplain mapping of large rivers. For example, in the Continental United States 90% match rates were achieved when compared to the use of HEC-RAS. However, this framework has not been validated for small watersheds, as substantial methodological challenges are anticipated. This project addresses these underlying challenges in two Quebec watersheds, the à la Raquette and Delisle watersheds. The boundary conditions of the HECRAS models were derived from an empirical statistical treatment of flow time series simulated by HYDROTEL, a hydrological model, using Canadian Precipitation Analysis Product (CaPA) time series. The results of this project point towards satisfactory performances, with match rates greater than 60 % for both watersheds. It should be noted that the application on the Delisle River is naive, that is without prior calibration of the HAND-SRC method. The overall accuracy ranged from 83.4 % to 96.2 % while the water surface elevation difference was quantified by an RMSE that was for the 100-year and 350-year return periods of 4.5 m and 7.1 m respectively and where most errors are between -0.34 m and 1.1 m representing a very good model comparing to similar studies. For à la Raquette, the application showed an overall accuracy coefficient of 98 % for a 350-year flow, with an accuracy of over 99 % for other return periods. The mapping of flood risk areas using HAND-SRC still faces certain challenges, notably the presence of complex urban infrastructures (e.g., culverts, bridges, and weirs) whose hydraulic influences are not considered by this geomatic approach. Given that most of Quebec (529,000 km²) topography has been digitized using LiDAR data, the results conveyed in this MSc thesis will allow for a better understanding of the sources of uncertainty associated with the application of the HAND-SRC method while demonstrating its potential for watersheds lacking hydrometeorological and high-resolution bathymetric data.
-
Abstract The flood-prone Saint John River (SJR, Wolastoq), which lies within a drainage basin of 55 110 km 2 , flows a length of 673 km from its source in northern Maine, United States, to its mouth in southern New Brunswick, Canada. Major industries in the basin include forestry, agriculture, and hydroelectric power. During the 1991–2020 reference period, the SJR basin (SJRB) experienced major spring flood events in 2008, 2018, and 2019. As part of the Saint John River Experiment on Cold Season Storms, the objective of this research is to characterize and contrast these three major spring flood events. Given that the floods all occurred during spring, the hypothesis being tested is that rapid snowmelt alone is the dominant driver of flooding in the SJRB. There were commonalities and differences regarding the contributing factors of the three flood years. When averaged across the upper basin, they showed consistency in terms of positive winter and spring total precipitation anomalies, positive snow water equivalent anomalies, and steep increases in April cumulative runoff. Rain-on-snow events were a prominent feature of all three flood years. However, differences between flood years were also evident, including inconsistencies with respect to ice jams and high tides. Certain factors were present in only one or two of the three flood years, including positive total precipitation anomalies in spring, positive heavy liquid precipitation anomalies in spring, positive heavy solid precipitation anomalies in winter, and positive temperature anomalies in spring. The dominant factor contributing to peak water levels was rapid snowmelt.
-
Abstract Overcooled talus slopes are generally described as islands of sporadic permafrost below the lower alpine limit of permafrost. The negative thermal anomaly of the ground is mainly consecutive to the internal ventilation of the deposit, but it is also conditioned by multiple factors as topography, slope aspect and incline, openwork structure and coarseness of the deposit, air temperature, solar radiation and wind regime. Therefore, the study of the spatiotemporal dynamics of ventilation processes allows a better understanding of the phenomenon. At Cannon Cliff, New Hampshire (USA), several field visits and environmental monitoring allowed us to describe the varying nature and significance of the ventilation mechanisms that can be observed at the ground surface and associated with both the intensity and direction of the airflows in a talus debris accumulation/protalus rampart system. The thermal negative anomalies are strong enough to lower the ground temperature to the point of preserving ice during the late spring and summer seasons. The monitoring of the gradient between external (air) and internal (talus) temperatures coupled with several dendroecological and geomorphological analyses provided a complete environmental picture of the impacts, feedback and extent of the phenomenon.