Votre recherche
Résultats 111 ressources
-
The interaction of water flow, ice, and structures is common in fluvial ice processes, particularly around Ice Control Structures (ICSs) that are used to manage and prevent ice jam floods. To evaluate the effectiveness of ICSs, it is essential to understand the complex interaction between water flow, ice and the structure. Numerical modeling is a valuable tool that can facilitate such understanding. Until now, classical Eulerian mesh-based methods have not been evaluated for the simulation of ice interaction with ICS. In this paper we evaluate the capability, accuracy, and efficiency of a coupled Computational Fluid Dynamic (CFD) and multi-body motion numerical model, based on the mesh-based FLOW-3D V.2023 R1 software for simulation of ice-structure interactions in several benchmark cases. The model’s performance was compared with results from meshless-based models (performed by others) for the same laboratory test cases that were used as a reference for the comparison. To this end, simulation results from a range of dam break laboratory experiments were analyzed, encompassing varying numbers of floating objects with distinct characteristics, both in the presence and absence of ICS, and under different downstream water levels. The results show that the overall accuracy of the FLOW-3D model under various experimental conditions resulted in a RMSE of 0.0534 as opposed to an overall RMSE of 0.0599 for the meshless methods. Instabilities were observed in the FLOW-3D model for more complex phenomena that involve open boundaries and a larger number of blocks. Although the FLOW-3D model exhibited a similar computational time to the GPU-accelerated meshless-based models, constraints on the processors speed and the number of cores available for use by the processors could limit the computational time.
-
Improving Disaster Preparedness Through Mutual Catastrophe Insurance In “A Mutual Catastrophe Insurance Framework for Horizontal Collaboration in Prepositioning Strategic Reserves,” H. Zbib, B. Balcik, M.-È. Rancourt, and G. Laporte present an innovative approach to collaborative disaster preparedness. The novel framework considers a risk-averse mutual insurer offering multiyear insurance contracts with coverage deductibles and limits to a portfolio of risk-averse policyholders. It is designed to foster horizontal collaboration among policyholders for joint disaster preparedness by effectively integrating operational and financial functions. The problem is modeled as a large-scale nonlinear multistage stochastic program and solved by using an effective Benders decomposition algorithm. The framework is validated with real data from 18 Caribbean countries focusing on hurricane preparedness. Given the predicted impacts of climate change, the proposed multiyear mutual catastrophe insurance framework promises to reshape global disaster preparedness and make a profound societal impact by providing a transparent disaster financing plan to protect vulnerable regions. The study’s findings stress the importance of long-term cooperation, prenegotiation of indemnification policies, and strategic setting of deductibles and limits by taking into account the correlation between policyholders. , We develop a mutual catastrophe insurance framework for the prepositioning of strategic reserves to foster horizontal collaboration in preparedness against low-probability high-impact natural disasters. The framework consists of a risk-averse insurer pooling the risks of a portfolio of risk-averse policyholders. It encompasses the operational functions of planning the prepositioning network in preparedness for incoming insurance claims, in the form of units of strategic reserves, setting coverage deductibles and limits of policyholders, and providing insurance coverage to the claims in the emergency response phase. It also encompasses the financial functions of ensuring the insurer’s solvency by efficiently managing its capital and allocating yearly premiums among policyholders. We model the framework as a very large-scale nonlinear multistage stochastic program, and solve it through a Benders decomposition algorithm. We study the case of Caribbean countries establishing a horizontal collaboration for hurricane preparedness. Our results show that the collaboration is more effective when established over a longer planning horizon, and is more beneficial when outsourcing becomes expensive. Moreover, the correlation of policyholders affected simultaneously under the extreme realizations and the position of their claims in their global claims distribution directly affects which policyholders get deductibles and limits. This underlines the importance of prenegotiating policyholders’ indemnification policies at the onset of collaboration. Funding: G. Laporte and M.-È. Rancourt were funded by the Canadian Natural Sciences and Engineering Research Council (NSERC) [Grants 2015-06189 and 2022-04846]. Funding was also provided by the Institute for Data Valorisation (IVADO) and the Canada Research Chair in Humanitarian Supply Chain Analytics. B. Balcik was partially supported by a grant from the Scientific and Technological Research Council of Turkey (TUBITAK) 2219 program. This support is gratefully acknowledged. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2021.0141 .
-
Abstract This study investigates possible trends and teleconnections in temperature extremes in New South Wales (NSW), Australia. Daily maximum and minimum temperature data covering the period 1971–2021 at 26 stations located in NSW were used. Three indices, which focus on daily maximum temperature, daily minimum temperature, and average daily temperature in terms of Excessive Heat Factor (EHF) were investigated to identify the occurrence of heatwaves (HWs). The study considered HWs of different durations (1-, 5-, and 10-days) in relation to intensity, frequency, duration, and their first occurrence parameters. Finally, the influences of three global climate drivers, namely – the El Niño/Southern Oscillation (ENSO), the Southern Annular Mode (SAM), and the Indian Ocean Dipole (IOD) were investigated with associated heatwave attributes for extended Austral summers. In this study, an increasing trend in both hot days and nights was observed for most of the selected stations within the study area. The increase was more pronounced for the last decade (2011–2021) of the investigated time period. The number, duration and frequency of the heatwaves increased over time considering the EHF criterion, whereas no particular trend was detected in cases of TX90 and TN90. It was also evident that the first occurrence of all the HWs shifted towards the onset of the extended summer while considering the EHF criterion of HWs. The correlations between heatwave attributes and climate drivers depicted that heatwave over NSW was positively influenced by both the IOD and ENSO and negatively correlated with SAM. The findings of this study will be useful in formulating strategies for managing the impacts of extreme temperature events such as bushfires, floods, droughts to the most at-risk regions within NSW.
-
Abstract As an in‐depth profile control agent, water‐soluble phenolic resin crosslinking polyacrylamide weak gel has been widely used in the middle and high water cut stage of water flooding reservoir. In this study, the phenolic resin was synthesized by two‐step alkali catalysis. Factors influencing the synthesis of phenolic resin, including the molar ratio of phenol and formaldehyde, catalyst types, reaction time, were investigated with hydroxylmethyl and aldehyde content as the criterion. When the molar ratio of phenolic resin was 1:2 and NaOH was catalyst, at 80°C for 4 h, the phenolic resin had the highest hydroxymethyl content (49.37%) and the lowest free aldehyde content (2.95%). Weak gel was formed by the reaction of LT002‐polyacrylamide with phenolic resin. Taking the gelation time and strength as criteria, the factors influencing the crosslinking property, including hydroxymethyl content, crosslinker addition, and polyacrylamide concentration were investigated respectively. Under optimal formulation, the property investigation shows that the hydroxymethyl group in the phenolic resin can be crosslinked with the amide group in polyacrylamide, the gelation time is long (50–60 h), and the gelation strength is larger than 5 × 10 4 mPa s, which is conductive to the plugging of deep oil layers. When the permeability was 5061 × 10 −3 μm 2 , the plugging rate was 72.73%.
-
The degradation of soil bonding, which can be described by the evolution of bond degradation variables, is essential in the constitutive modeling of cemented soils. A degradation variable with a value of 0/1.0 indicates that the applied stress is completely sustained by bonded particles/unbounded grains. The discrete element method (DEM) was used for cemented soils to analyze the bond degradation evolution and to evaluate the degradation variables at the contact scale. Numerical cemented soil samples with different bonding strengths were first prepared using an advanced contact model (CM). Constant stress ratio compression, one-dimensional compression, conventional triaxial tests (CTTs), and true triaxial tests (TTTs) were then implemented for the numerical samples. After that, the numerical results were adopted to investigate the evolution of the bond degradation variables BN and B0. In the triaxial tests, B0 evolves to be near to or larger than BN due to shearing, which indicates that shearing increases the bearing rate of bond contacts. Finally, an approximate stress-path-independent bond degradation variable Bσ was developed. The evolution of Bσ with the equivalent plastic strain can be effectively described by an exponential function and a hyperbolic function.
-
The production of natural gas hydrates will change the cementation strength, porosity, and effective stress in the stratum, which may lead to engineering and geological disasters. Sand production is a phenomenon where sand particles are carried out of the reservoir along with fluids during gas extraction, posing challenges to safe and sustainable production. This study explored the mechanism of fine particle migration in multiphase flow by a microscopic visualization test device. The device can inject a gas–liquid–solid phase at the same time and allow real-time observation. Experimental tests on fine particle migration of single- and two-phase fluid flow were carried out considering different conditions, i.e., fine particle concentration, fine particle size, fluid flow rate, and gas–liquid ratio. The results show that in single-phase fluid flow, the original gas will gradually dissolve in the liquid phase, and finally stay in the test device as bubbles, which can change the pore structures, resulting in the accumulation of fine particles at the gas–liquid interface. In two-phase fluid flow with mixed gas–water fluids, there are two flow modes of gas–liquid flow: mixed flow and separated flow. The interfacial tension at the gas–liquid interface can effectively migrate fine particles when the gas–liquid flows alternately and the sand production rate further increases as the gas–liquid ratio increases. In addition, changes in the concentration of fine particles, particle size, fluid flow rate, and the gas–liquid ratio will affect the migration of fine particles, leading to differences in the final sand production.
-
Extreme precipitation events play a crucial role in shaping the vulnerability of regions like Algeria to the impacts of climate change. To delve deeper into this critical aspect, this study investigates the changing patterns of extreme precipitation across five sub-regions of Algeria using data from 33 model simulations provided by the NASA Earth Exchange Global Daily Downscaled Climate Projections (NEX-GDDP-CMIP6). Our analysis reveals a projected decline in annual precipitation for four of these regions, contrasting with an expected increase in desert areas where annual precipitation levels remain low, typically not exceeding 120 mm. Furthermore, key precipitation indices such as maximum 1-day precipitation (Rx1day) and extremely wet-day precipitation (R99p) consistently show upward trends across all zones, under both SSP245 and SSP585 scenarios. However, the number of heavy precipitation days (R20mm) demonstrates varied trends among zones, exhibiting stable fluctuations. These findings provide valuable foresight into future precipitation patterns, offering essential insights for policymakers and stakeholders. By anticipating these changes, adaptive strategies can be devised to mitigate potential climate change impacts on crucial sectors such as agriculture, flooding, water resources, and drought.