Votre recherche
Résultats 85 ressources
-
In Canada, flooding is the most common and costly natural hazard. Flooding events significantly impact communities, damage infrastructures and threaten public security. Communication, as part of a flood risk management strategy, is an essential means of countering these threats. It is therefore important to develop new and innovative tools to communicate the flood risk with citizens. From this perspective, the use of story maps can be very effectively implemented for a broad audience, particularly to stakeholders. This paper details how an interactive web-based story map was set up to communicate current and future flood risks in the Petite-Nation River watershed, Quebec (Canada). This web technology application combines informative texts and interactive maps on current and future flood risks in the Petite-Nation River watershed. Flood risk and climate maps were generated using the GARI tool, implemented using a geographic information system (GIS) supported by ArcGIS Online (Esri). Three climate change scenarios developed by the Hydroclimatic Atlas of Southern Quebec were used to visualize potential future impacts. This study concluded that our story map is an efficient flood hazard communication tool. The assets of this interactive web mapping tool are numerous, namely user-friendly mapping, use and interaction, and customizable displays.
-
AbstractLarge scale flood risk analyses are fundamental to many applications requiring national or international overviews of flood risk. While large‐scale climate patterns such as teleconnections and climate change become important at this scale, it remains a challenge to represent the local hydrological cycle over various watersheds in a manner that is physically consistent with climate. As a result, global models tend to suffer from a lack of available scenarios and flexibility that are key for planners, relief organizations, regulators, and the financial services industry to analyze the socioeconomic, demographic, and climatic factors affecting exposure. Here we introduce a data‐driven, global, fast, flexible, and climate‐consistent flood risk modeling framework for applications that do not necessarily require high‐resolution flood mapping. We use statistical and machine learning methods to examine the relationship between historical flood occurrence and impact from the Dartmouth Flood Observatory (1985–2017), and climatic, watershed, and socioeconomic factors for 4,734 HydroSHEDS watersheds globally. Using bias‐corrected output from the NCAR CESM Large Ensemble (1980–2020), and the fitted statistical relationships, we simulate 1 million years of events worldwide along with the population displaced in each event. We discuss potential applications of the model and present global flood hazard and risk maps. The main value of this global flood model lies in its ability to quickly simulate realistic flood events at a resolution that is useful for large‐scale socioeconomic and financial planning, yet we expect it to be useful to climate and natural hazard scientists who are interested in socioeconomic impacts of climate.
-
In Canada, floods are the most common largely distributed hazard to life, property, the economy, water systems, and the environment costing the Canadian economy billions of dollars. Arising from this is FloodNet: a transdisciplinary strategic research network funded by Canadas Natural Sciences and Engineering Research Council, as a vehicle for a concerted nation-wide effort to improve flood forecasting and to better assess risk and manage the environmental and socio-economic consequences of floods. Four themes were explored in this network which include 1) Flood regimes in Canada; 2) Uncertainty of floods; 3) Development of a flood forecasting and early warning system and 4) Physical, socio-economic and environmental effects of floods. Over the years a range of statistical, hydrologic, modeling, and economic and psychometric analyses were used across the themes. FloodNet has made significant progress in: assessing spatial and temporal variation of extreme events; updating intensity-duration-frequency (IDF) curves; improving streamflow forecasting using novel techniques; development and testing of a Canadian adaptive flood forecasting and early warning system (CAFFEWS); a better understanding of flood impacts and risk. Despite these advancements FloodNet ends at a time when the World is still grappling with severe floods (e.g., Europe, China, Africa) and we report on several lessons learned. Mitigating the impact of flood hazards in Canada remains a challenging task due to the countrys varied geography, environment, and jurisdictional political boundaries. Canadian technical guide for developing IDF relations for infrastructure design in the climate change context has been recently updated. However, national guidelines for flood frequency analyses are needed since across the country there is not a unified approach to flood forecasting as each jurisdiction uses individual models and procedures. From the perspective of risk and vulnerability, there remains great need to better understand the direct and indirect impacts of floods on society, the economy and the environment.
-
Abstract Natural hazard events provide opportunities for policy change to enhance disaster risk reduction (DRR), yet it remains unclear whether these events actually fulfill this transformative role around the world. Here, we investigate relationships between the frequency (number of events) and severity (fatalities, economic losses, and affected people) of natural hazards and DRR policy change in 85 countries over eight years. Our results show that frequency and severity factors are generally unassociated with improved DRR policy when controlling for income-levels, differences in starting policy values, and hazard event types. This is a robust result that accounts for event frequency and different hazard severity indicators, four baseline periods estimating hazard impacts, and multiple policy indicators. Although we show that natural hazards are unassociated with improved DRR policy globally, the study unveils variability in policy progress between countries experiencing similar levels of hazard frequency and severity.
-
A satisfactory performance of hydrological models under historical climate conditions is considered a prerequisite step in any hydrological climate change impact study. Despite the significant interest in global hydrological modeling, few systematic evaluations of global hydrological models (gHMs) at the catchment scale have been carried out. This study investigates the performance of 4 gHMs driven by 4 global observation-based meteorological inputs at simulating weekly discharges over 198 large-sized North American catchments for the 1971–2010 period. The 16 discharge simulations serve as the basis for evaluating gHM accuracy at the catchment scale within the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). The simulated discharges by the four gHMs are compared against observed and simulated weekly discharge values by two regional hydrological models (rHMs) driven by a global meteorological dataset for the same period. We discuss the implications of both modeling approaches as well as the influence of catchment characteristics and global meteorological forcing in terms of model performance through statistical criteria and visual hydrograph comparison for catchment-scale hydrological studies. Overall, the gHM discharge statistics exhibit poor agreement with observations at the catchment scale and manifest considerable bias and errors in seasonal flow simulations. We confirm that the gHM approach, as experimentally implemented through the ISIMIP2a, must be used with caution for regional studies. We find the rHM approach to be more trustworthy and recommend using it for hydrological studies, especially if findings are intended to support operational decision-making.
-
Abstract Ensemble forecasting applied to the field of hydrology is currently an established area of research embracing a broad spectrum of operational situations. This work catalogs the various pathways of ensemble streamflow forecasting based on an exhaustive review of more than 700 studies over the last 40 years. We focus on the advanced state of the art in the model‐based (dynamical) ensemble forecasting approaches. Ensemble streamflow prediction systems are categorized into three leading classes: statistics‐based streamflow prediction systems, climatology‐based ensemble streamflow prediction systems and numerical weather prediction‐based hydrological ensemble prediction systems. For each ensemble approach, technical information, as well as details about its strengths and weaknesses, are provided based on a critical review of the studies listed. Through this literature review, the performance and uncertainty associated with the ensemble forecasting systems are underlined from both operational and scientific viewpoints. Finally, the remaining key challenges and prospective future research directions are presented, notably through hybrid dynamical ‐ statistical learning approaches, which obviously present new challenges to be overcome in order to allow the successful employment of ensemble streamflow forecasting systems in the next decades. Targeting students, researchers and practitioners, this review provides a detailed perspective on the major features of an increasingly important area of hydrological forecasting. , Key Points This work summarizes the 40 years of research in the generation of streamflow forecasts based on an exhaustive review of studies Ensemble prediction systems are categorized into three classes: statistics‐based, climatology‐based and numerical weather prediction‐based hydrological ensemble prediction systems For each ensemble forecasting system, thorough technical information is provided
-
Abstract Predicting floods and droughts is essential to inform the development of policy in water management, climate change adaptation and disaster risk reduction. Yet, hydrological predictions are highly uncertain, while the frequency, severity and spatial distribution of extreme events are further complicated by the increasing impact of human activities on the water cycle. In this commentary, we argue that four main aspects characterizing the complexity of human‐water systems should be explicitly addressed: feedbacks, scales, tradeoffs and inequalities. We propose the integration of multiple research methods as a way to cope with complexity and develop policy‐relevant science. , Plain Language Summary Several governments today claim to be following the science in addressing crises caused by the occurrence of extreme events, such as floods and droughts, or the emergence of global threats, such as climate change and COVID‐19. In this commentary, we show that there are no universal answers to apparently simple questions such as: Do levees reduce flood risk? Do reservoirs alleviate droughts? We argue that the best science we have consists of a plurality of legitimate interpretations and a range of foresights, which can be enriched by integrating multiple disciplines and research methods. , Key Points Accounting for both power relations and cognitive heuristics is key to unravel the interplay of floods, droughts and human societies Flood and drought predictions are complicated by the increasing impact of human activities on the water cycle We propose the integration of multiple research methods as a way to cope with uncertainty and develop policy‐relevant science
-
Abstract. Climate change affects natural streamflow regimes globally. To assess alterations in streamflow regimes, typically temporal variations in one or a few streamflow characteristics are taken into account. This approach, however, cannot see simultaneous changes in multiple streamflow characteristics, does not utilize all the available information contained in a streamflow hydrograph, and cannot describe how and to what extent streamflow regimes evolve from one to another. To address these gaps, we conceptualize streamflow regimes as intersecting spectrums that are formed by multiple streamflow characteristics. Accordingly, the changes in a streamflow regime should be diagnosed through gradual, yet continuous changes in an ensemble of streamflow characteristics. To incorporate these key considerations, we propose a generic algorithm to first classify streams into a finite set of intersecting fuzzy clusters. Accordingly, by analyzing how the degrees of membership to each cluster change in a given stream, we quantify shifts from one regime to another. We apply this approach to the data, obtained from 105 natural Canadian streams, during the period of 1966 to 2010. We show that natural streamflow in Canada can be categorized into six regime types, with clear hydrological and geographical distinctions. Analyses of trends in membership values show that alterations in natural streamflow regimes vary among different regions. Having said that, we show that in more than 80 % of considered streams, there is a dominant regime shift that can be attributed to simultaneous changes in streamflow characteristics, some of which have remained previously unknown. Our study not only introduces a new globally relevant algorithm for identifying changing streamflow regimes but also provides a fresh look at streamflow alterations in Canada, highlighting complex and multifaceted impacts of climate change on streamflow regimes in cold regions.
-
Framed within the Copernicus Climate Change Service (C3S) of the European Commission, the European Centre for Medium-Range Weather Forecasts (ECMWF) is producing an enhanced global dataset for the land component of the fifth generation of European ReAnalysis (ERA5), hereafter referred to as ERA5-Land. Once completed, the period covered will span from 1950 to the present, with continuous updates to support land monitoring applications. ERA5-Land describes the evolution of the water and energy cycles over land in a consistent manner over the production period, which, among others, could be used to analyse trends and anomalies. This is achieved through global high-resolution numerical integrations of the ECMWF land surface model driven by the downscaled meteorological forcing from the ERA5 climate reanalysis, including an elevation correction for the thermodynamic near-surface state. ERA5-Land shares with ERA5 most of the parameterizations that guarantees the use of the state-of-the-art land surface modelling applied to numerical weather prediction (NWP) models. A main advantage of ERA5-Land compared to ERA5 and the older ERA-Interim is the horizontal resolution, which is enhanced globally to 9 km compared to 31 km (ERA5) or 80 km (ERA-Interim), whereas the temporal resolution is hourly as in ERA5. Evaluation against independent in situ observations and global model or satellite-based reference datasets shows the added value of ERA5-Land in the description of the hydrological cycle, in particular with enhanced soil moisture and lake description, and an overall better agreement of river discharge estimations with available observations. However, ERA5-Land snow depth fields present a mixed performance when compared to those of ERA5, depending on geographical location and altitude. The description of the energy cycle shows comparable results with ERA5. Nevertheless, ERA5-Land reduces the global averaged root mean square error of the skin temperature, taking as reference MODIS data, mainly due to the contribution of coastal points where spatial resolution is important. Since January 2020, the ERA5-Land period available has extended from January 1981 to the near present, with a 2- to 3-month delay with respect to real time. The segment prior to 1981 is in production, aiming for a release of the whole dataset in summer/autumn 2021. The high spatial and temporal resolution of ERA5-Land, its extended period, and the consistency of the fields produced makes it a valuable dataset to support hydrological studies, to initialize NWP and climate models, and to support diverse applications dealing with water resource, land, and environmental management. The full ERA5-Land hourly (Muñoz-Sabater, 2019a) and monthly (Muñoz-Sabater, 2019b) averaged datasets presented in this paper are available through the C3S Climate Data Store at https://doi.org/10.24381/cds.e2161bac and https://doi.org/10.24381/cds.68d2bb30, respectively.
-
RÉSUMÉ: Les inondations sont considérées comme l'un des risques naturels les plus dangereux au monde. Plusieurs pays souffrent des conséquences néfastes des inondations. Au Canada, plusieurs provinces ont subi des inondations au cours du siècle dernier. Par exemple, la rivière des Outaouais a été confrontée à de nombreuses inondations comme en 2017 et 2019. La population d'Ottawa continue à augmenter d'une année à l'autre. C'est pour cela que nous avons choisi la rivière des Outaouais comme étude de cas pour ce projet dans le but de protéger la société contre les risques causés par les inondations. Les pays adoptent plusieurs solutions basées sur différentes méthodes afin de minimiser les dommages causés par les crues. La plupart des scientifiques s'accordent que la prévision des crues est la meilleure façon de limiter les conséquences des crues. Les systèmes de prévision des crues sont indispensables dans les pays fréquemment confrontés à des crues. Ils visent à fournir un long délai d'exécution et à fournir aux autorités et aux décideurs des informations suffisantes. Par conséquent, ils auront suffisamment de temps pour prendre les mesures adéquates pour sauver la vie de la population et limiter les catastrophes économiques dues aux inondations. ABSTRACT: Floods are one of the most catastrophic natural disasters in Canada and around the world that can cause loss of life and damages to properties and infrastructures. Saguenay flood (1996), southern Alberta flood (2013), and Ottawa floods (2017, 2019), are a few examples of Canadian floods with tremendous socio-economic impacts. Flood forecasting and predicting its characteristics (e.g., its magnitude and extent) has an important role in preventing and mitigating such flood impacts. Particularly, short-term forecasting is crucial for early warning systems and emergency response to floods. This study presents an integrated hydraulic-hydrologic modeling system for flood prediction. In this system, the Delft3D two-dimensional hydrodynamic model is connected with a HEC-HMS hydrologic model and observation data to provide an automatic exchange of data and results. Delft3D and HEC-HMS were chosen for this study because they were widely used and provided good results. In addition, they were applied in several flood forecasting studies. The prediction weather data and watershed characteristics provide input to the hydrological model to predict streamflow conditions, which are then automatically fed into the hydrodynamic model. The hydrodynamic model simulates the flood characteristics such as water level, 2D depth-averaged velocity field, and flood extent.
-
The frequency of natural hazards in North America presents a significant challenge for governments due to the damages they cause to the environment. Floods are severe hydrological events caused by spring snowmelt and intense rain events. Flood frequency analysis studies assumes that annual peak flood events occur independently of each other, regardless of previous flood events (the independent and identically distributed (i.i.d.) assumption); however, annual peak flood records do not necessarily appear to conform to these assumptions. First, a review of the literature on the effects of climate oscillations on extreme flood frequencies in North America was conducted. Then, the i.i.d. flood event assumption was tested by analyzing the effects of the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) on 250 naturally flowing annual peak flood records across the entire western North American margin. Using permutation tests on quantile-quantile (Q-Q) plots, I found that the PDO has a greater impact on the magnitude of annual peak floods than the AMO. Twenty-six percent of the gauges have higher magnitude annual floods depending on the PDO phase (p < 0.1). Next, I examined the interacting effects of the PDO and AMO on the frequencies of lower and upper quartile annual peak floods, and found reinforcing, cancelling, and dominating effects. Since these two climate oscillations have significant effects on the magnitudes of annual peak floods, the i.i.d. assumption does not hold. Hence, I advocate for the need to re-assess baseline flood analysis in western North America to improve flood management strategies.
-
Abstract Global warming is causing glaciers in the Caucasus Mountains and around the world to lose mass at an accelerated pace. As a result of this rapid retreat, significant parts of the glacierized surface area can be covered with debris deposits, often making them indistinguishable from the surrounding land surface by optical remote-sensing systems. Here, we present the DebCovG-carto toolbox to delineate debris-covered and debris-free glacier surfaces from non-glacierized regions. The algorithm uses synthetic aperture radar-derived coherence images and the normalized difference snow index applied to optical satellite data. Validating the remotely-sensed boundaries of Ushba and Chalaati glaciers using field GPS data demonstrates that the use of pairs of Sentinel-1 images (2019) from identical ascending and descending orbits can substantially improve debris-covered glacier surface detection. The DebCovG-carto toolbox leverages multiple orbits to automate the mapping of debris-covered glacier surfaces. This new automatic method offers the possibility of quickly correcting glacier mapping errors caused by the presence of debris and makes automatic mapping of glacierized surfaces considerably faster than the use of other subjective methods.