Votre recherche
Résultats 20 ressources
-
Redlining occurs when institutions decline to make mortgage loans in specific areas. The practice originated in the 1930s, when federal agencies encouraged lenders to rate neighbourhoods for mortgage risk. Since the 1960s, especially in the US, it has been associated with disinvestment, racial discrimination and neighbourhood decline. It has always been viewed as a feature of the inner city. Historical evidence indicates that across Canada the first areas to be redlined were the less-desirable suburbs. Land registry and property assessment data establish the emergent patterns in Hamilton, Ontario. Between 1931 and 1951, institutional lending became a social norm first on new dwellings in suburbs. Individual lenders, previously dominant, were relegated to older inner-city properties or cheaper dwellings in less-desirable suburbs. In 1931, there were only minor geographical variations in the incidence of mortgage finance, and specifically of institutional financing, across the urban area. By 1951, lending institutions, led by insurance companies, were discriminating sharply in favour of the West End, the Mountain and Bartonville, and against those parts of the East End that were unserviced or close to lakefront industry. The evidence for Hamilton confirms that in Canada redlining originated in the suburbs. The same may also be true for US metropolitan areas, although the institutional context was different and relevant data are lacking.
-
As Hurricane Katrina revealed, coastal communities have become far more vulnerable to tropical storms and the long-term displacement of residents. Yet, because the emergency management model presumes that recovery quickly follows response, governments focus only on short-term, localized displacement. However, long-term and long-distance displacement exposes a gray area between immediate shelter and permanent housing, along with concerns about vulnerability, housing availability, and land development. We begin this article by discussing the transition between response and recovery. We then review literature regarding social vulnerability, displacement, provision of temporary housing, households' return decisions, and disaster-driven land development and housing construction processes. We close with thoughts on future research to increase planners' understanding of the issues involved and to help them craft effective policies.
-
Prewhitening has been used to eliminate the influence of serial correlation on the Mann‐Kendall (MK) test in trend‐detection studies of hydrological time series. However, its ability to accomplish such a task has not been well documented. This study investigates this issue by Monte Carlo simulation. Simulated time series consist of a linear trend and a lag 1 autoregressive (AR(1)) process with a noise. Simulation results demonstrate that when trend exists in a time series, the effect of positive/negative serial correlation on the MK test is dependent upon sample size, magnitude of serial correlation, and magnitude of trend. When sample size and magnitude of trend are large enough, serial correlation no longer significantly affects the MK test statistics. Removal of positive AR(1) from time series by prewhitening will remove a portion of trend and hence reduces the possibility of rejecting the null hypothesis while it might be false. Contrarily, removal of negative AR(1) by prewhitening will inflate trend and leads to an increase in the possibility of rejecting the null hypothesis while it might be true. Therefore, prewhitening is not suitable for eliminating the effect of serial correlation on the MK test when trend exists within a time series.
-
1. This review is presented as a broad synthesis of riverine landscape diversity, beginning with an account of the variety of landscape elements contained within river corridors. Landscape dynamics within river corridors are then examined in the context of landscape evolution, ecological succession and turnover rates of landscape elements. This is followed by an overview of the role of connectivity and ends with a riverine landscape perspective of biodiversity. 2. River corridors in the natural state are characterised by a diverse array of landscape elements, including surface waters (a gradient of lotic and lentic waterbodies), the fluvial stygoscape (alluvial aquifers), riparian systems (alluvial forests, marshes, meadows) and geomorphic features (bars and islands, ridges and swales, levees and terraces, fans and deltas, fringing floodplains, wood debris deposits and channel networks). 3. Fluvial action (erosion, transport, deposition) is the predominant agent of landscape evolution and also constitutes the natural disturbance regime primarily responsible for sustaining a high level of landscape diversity in river corridors. Although individual landscape features may exhibit high turnover, largely as a function of the interactions between fluvial dynamics and successional phenomena, their relative abundance in the river corridor tends to remain constant over ecological time. 4. Hydrological connectivity, the exchange of matter, energy and biota via the aqueous medium, plays a major though poorly understood role in sustaining riverine landscape diversity. Rigorous investigations of connectivity in diverse river systems should provide considerable insight into landscape‐level functional processes. 5. The species pool in riverine landscapes is derived from terrestrial and aquatic communities inhabiting diverse lotic, lentic, riparian and groundwater habitats arrayed across spatio‐temporal gradients. Natural disturbance regimes are responsible for both expanding the resource gradient in riverine landscapes as well as for constraining competitive exclusion. 6. Riverine landscapes provide an ideal setting for investigating how complex interactions between disturbance and productivity structure species diversity patterns.
-
Abstract Ice is present during a part of the year on many rivers of cold, and even temperate, regions of the globe. Though largely ignored in hydrological literature, river ice has serious hydrologic impacts, including extreme flood events caused by ice jams, interference with transportation and energy production, low winter flows and associated ecological and water quality consequences. It is also a major factor in the life cycle of many aquatic and other species, being both beneficial and destructive, depending on location and time of year. A brief review of the hydrologic aspects of river ice shows strong climatic links and illustrates the sensitivity of the entire ice regime to changes in climatic conditions. To date, this sensitivity has only partly been documented: the vast majority of related studies have focused on the timing of freeze‐up and break‐up over the past century, and indicate trends that are consistent with concomitant changes in air temperature. It is only in the past few years that attention has been paid to the more complex, and practically more important, question of what climatic change may do to the frequency and severity of extreme ice jams, floods and low flows. The probable changes to the ice regime of rivers, and associated hydrological processes and impacts, are discussed in the light of current understanding. Copyright © 2002 John Wiley & Sons, Ltd.
-
Watershed runoff is closely related to land use but this influence is difficult to quantify. This study focused on the Chaudière River watershed (Québec,...
-
A physiographical space‐based kriging method is proposed for regional flood frequency estimation. The methodology relies on the construction of a continuous physiographical space using physiographical and meteorological characteristics of gauging stations and the use of multivariate analysis techniques. Two multivariate analysis methods were tested: canonical correlation analysis (CCA) and principal components analysis. Ordinary kriging, a geostatistical technique, was then used to interpolate flow quantiles through the physiographical space. Data from 151 gauging stations across the southern part of the province of Quebec, Canada, were used to illustrate this approach. In order to evaluate the performance of the proposed method, two validation techniques, cross validation and split‐sample validation, were applied to estimate flood quantiles corresponding to the 10, 50, and 100 year return periods. Results of the proposed method were compared to those produced by a traditional regional estimation method using the canonical correlation analysis. The proposed method yielded satisfactory results. It allowed, for instance, for estimating the 10 year return period specific flow with a coefficient of determination of up to 0.78. However, this performance decreases with the increase in the quantile return period. Results also showed that the proposed method works better when the physiographical space is defined using canonical correlation analysis. It is shown that kriging in the CCA physiographical space yields results as precise as the traditional estimation method, with a fraction of the effort and the computation time.
-
Abstract. The potential impact of future climate change on runoff generation processes in two southern British Columbia catchments was explored using the Canadian Centre for Climate Modelling Analysis General Circulation Model (CGCMa1) to estimate future changes in precipitation, temperature and cloud cover while the U.B.C. Watershed Model was used to simulate discharges and quantify the separate runoff components, i.e. rainfall, snowmelt, glacier melt and groundwater. Changes, not only in precipitation and temperature but also in the spatial distribution of precipitation with elevation, cloud cover, glacier extension, altitude distribution of vegetation, vegetation biomass production and plant physiology were considered. The future climate of the catchments would be wetter and warmer than the present. In the maritime rain-fed catchment of the Upper Campbell, runoff from rainfall is the most significant source of flow for present and future climatic conditions in the autumn and winter whereas runoff from groundwater generates the flow in spring and summer, especially for the future climate scenario. The total runoff, under the future climatic conditions, would increase in the autumn and winter and decrease in spring and summer. In contrast, in the interior snow-covered Illecillewaet catchment, groundwater is the most significant runoff generation mechanism in the autumn and winter although, at present, significant flow is generated from snowmelt in spring and from glacier runoff in summer. In the future scenario, the contribution to flow from snowmelt would increase in winter and diminish in spring while the runoff from the glacier would remain unchanged; groundwater would then become the most significant source of runoff, which would peak earlier in the season. Keywords: climatic change, hydrological simulation, rainfall, snowmelt, runoff processes
-
Rivers are sensitive to natural climate change as well as to human impacts such as flow modification and land-use change. Climate change could cause changes to precipitation amounts, the intensity of cyclonic storms, the proportion of precipitation falling as rain, glacier mass balance, and the extent of permafrost; all of which affect the hydrology and morphology of river systems. Changes to the frequency and magnitude of flood flows present the greatest threat. Historically, wetter periods are associated with significantly higher flood frequency and magnitude. These effects are reduced in drainage basins with large lakes or glacier storage. Alluvial rivers with fine-grained sediments are most sensitive, but all rivers will respond, except those flowing through resistant bedrock. The consequences of changes in flow include changes in channel dimensions, gradient, channel pattern, sedimentation, bank erosion rates, and channel migration rates. The most sensitive and vulnerable regions are in southern Canada, particularly those regions at risk of substantial increases in rainfall intensity and duration. In northern rivers, thawing of permafrost and changes to river-ice conditions are important concerns. The type and magnitude of effects will be different between regions, as well as between small and large river basins. Time scales of change will range from years to centuries. These changes will affect the use that we make of rivers and their floodplains, and may require mitigative measures. Radical change is also possible. Climatic impacts will be ubiquitous and will be in addition to existing and future direct human impact on streamflow and rivers.