UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Types d'événements extrêmes
  • Évènements liés au froid (neige, glace)
Langue de la ressource
  • Anglais

Résultats 374 ressources

Recently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 19
  • Page 1 de 19
Résumés
  • Chowdhury, R. M., Ahn, J., Torlapati, J., & Jahan, K. (2025). Enhancing management of flood forecasting in Southern New Jersey: a HEC-HMS model development for Maurice River and Raccoon Creek Watersheds. Applied Water Science, 15(9), 240. https://doi.org/10.1007/s13201-025-02594-z
    Consulter sur link.springer.com
  • Javidi Sabbaghian, R., Fereshtehpour, M., & Goli Hosseinabad, M. R. (2025). Integrated hydrologic-economic modeling for urban flood risk mitigation using SWMM, HEC-RAS, and HAZUS: a case study of the Bronx river watershed, NYC. Sustainable Water Resources Management, 11(5). https://doi.org/10.1007/s40899-025-01263-y

    Rapid urban expansion has significantly altered land use patterns, resulting in a decrease in pervious surface areas and a disruption of hydrologic connectivity between surface water and groundwater systems. Combined with inadequate drainage systems and poorly managed runoff, these changes have intensified urban flooding, leading to fatalities and significant infrastructure damage in many rapidly growing and climate-vulnerable urban areas around the world. This study presents an integrated economic-hydrologic model to assess the effectiveness of Low Impact Development (LID) measures—specifically permeable pavement, infiltration trenches, bio-retention cells, and rain barrels—in mitigating flood damage in the Bronx river watershed, NYC. The Storm Water Management Model (SWMM) was employed to simulate flood events and assess the effectiveness of various LIDs, applied individually and in combination, in reducing peak discharge. Flood inundation maps generated using HEC-GeoRAS were integrated with the HAZUS damage estimation model to quantify potential flood damages. A benefit-to-cost (BC) ratio was then calculated by comparing the monetary savings from reduced flood damage against the implementation costs of LID measures. Results indicate that the combined LID scenario offers the highest peak flow reduction, with permeable pavement alone reducing flow by 57%, outperforming other techniques under equal area coverage. Among all individual options, permeable pavement yields the highest cumulative BC ratio under all scenarios (4.6), whereas rain barrels are the least effective (2.6). The proposed evaluation framework highlights the importance of economic efficiency in flood mitigation planning and provides a structured foundation for informed decision-making to enhance urban resilience through LID implementation. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.

  • Lhamidi, K., & El Khattabi, J. (2025). Enhancing the hydrological performance of Low Impact Development infrastructure through earthworm activity and vegetation dynamics for mitigating urban flooding. Ecological Engineering, 221. https://doi.org/10.1016/j.ecoleng.2025.107786

    Urban soil sealing and anthropogenic activities, combined with the increasing intensity of rainfall due to climate change, is a threat to urban environments, exacerbating flood risks. To assess these challenges, Low Impact Development strategies, based on Nature-based solutions, are a key solution to mitigate urban flooding. To enhance the hydrological performance of LID infrastructure, and to meet the guideline requirements related to emptying time, specifically in low hydraulic conductivity soils, earthworm activity and vegetation dynamics can play a major role. The ETAGEP experimental site was built to study to address those challenges. 12 swales (10 m2 infiltration area for each swale) were monitored to evaluate the impact of earthworm activity (A. caliginosa and L. terrestris) and vegetation dynamics (Rye Grass, Petasites hybridus and Salix alba) to enhance the hydrological performance. The infiltration rate of the swales evolved in a differentiated manner, with an increase of 16.1 % to 310.8 % and draining times decrease of 13.9 % to 75.7, depending on initial soil hydro-physical properties and the impervious areas of the catchment which influence runoff volumes. The simulations on SWMM software showed similar results, with an enhancement of the hydraulic conductivity of N6 swales (60 m2 total catchment area) increasing from 18 mm h−1 to 25 mm h−1, and a reduction of drawdown time by 24.4 % (N6) and 20.8 % (N11–110 m2 active surface). A simulated storm event of 44.8 mm resulted in an overflow of 2.12 m3 for the N11 swale configuration, while no overflow was observed for N6. These results highlight the ecosystem services of earthworms for a sustainable stormwater management in urban environments, enhancing the hydrological performance of LID infrastructures and reducing therefore flood risks and limiting pressure on drainage network. © 2025 The Author(s)

  • Mitali, P., Patel, N., Modi, K., & Patel, S. (2026). Predictive Modeling and Strategic Planning for Urban Flood Risk Mitigation. Commun. Comput. Info. Sci., 2619 CCIS, 188–199. https://doi.org/10.1007/978-3-032-00350-8_14

    Urban flooding threatens Indian cities and is made worse by rapid urbanization, climate change and poor infrastructure. Severe flooding occurred in cities such as Mumbai, Chennai and Ahmedabad. This has caused huge economic losses and displacement. This study addresses the limitations of traditional flood forecasting methods. It has to contend with the complex dynamics of urban flooding. We offer a deep learning approach which uses the network Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to improve flood risk prediction. Our CNN-LSTM model combines spatial data (water table, topography) and temporal data (historical model) to classify flood risk as low or high. This method includes collecting data pre-processing (MinMaxScaler, LabelEncoder) Modeling, Training and Evaluation. The results demonstrate the accuracy of flood risk predictions and provide insights into flexible strategies for urban flood management. This research highlights the role of data-driven approaches in improving urban planning to reduce flood risk in high-risk areas. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

  • Alabbad, Y., Cikmaz, A. B., Yildirim, E., & Demir, I. (2025). Flood Exposure Assessment of Railway Infrastructure: A Case Study for Iowa. Applied Sciences (Switzerland), 15(16). https://doi.org/10.3390/app15168992

    Floods pose a substantial risk to human well-being. These risks encompass economic losses, infrastructural damage, disruption of daily life, and potential loss of life. This study presents a state-wide and county-level spatial exposure assessment of the Iowa railway network, emphasizing the resilience and reliability of essential services during such disasters. In the United States, the railway network is vital for the distribution of goods and services. This research specifically targets the railway network in Iowa, a state where the impact of flooding on railways has not been extensively studied. We employ comprehensive GIS analysis to assess the vulnerability of the railway network, bridges, rail crossings, and facilities under 100- and 500-year flood scenarios at the state level. Additionally, we conducted a detailed investigation into the most flood-affected counties, focusing on the susceptibility of railway bridges. Our state-wide analysis reveals that, in a 100-year flood scenario, up to 9% of railroads, 8% of rail crossings, 58% of bridges, and 6% of facilities are impacted. In a 500-year flood scenario, these figures increase to 16%, 14%, 61%, and 13%, respectively. Furthermore, our secondary analysis using flood depth maps indicates that approximately half of the railway bridges in the flood zones of the studied counties could become non-functional in both flood scenarios. These findings are crucial for developing effective disaster risk management plans and strategies, ensuring adequate preparedness for the impacts of flooding on railway infrastructure. © 2025 by the authors.

  • Albers, J. R., Newman, M., Balmaseda, M. A., Sweet, W., Wang, Y., & Xu, T. (2025). Assessing subseasonal forecast skill for use in predicting US coastal inundation risk. Ocean Science, 21(4), 1761–1785. https://doi.org/10.5194/os-21-1761-2025

    Abstract. Developing predictions of coastal flooding risk on subseasonal timescales (2–6 weeks in advance) is an emerging priority for the National Oceanic and Atmospheric Administration (NOAA). In this study, we assess the ability of two current operational forecast systems, the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS) and the Centre National de Recherches Météorologiques climate model (CNRM), to make subseasonal ensemble predictions of the non-tidal residual component of coastal water levels at United States coastal gauge stations for the period 2000–2019. These models were chosen because they assimilate satellite altimetry at forecast initialization and attempt to predict the mean sea level, including a global mean component whose absence in other forecast systems complicates assessment of tide gauge reforecast skill. Both forecast systems have skill that exceeds damped persistence for forecast leads through 2–3 weeks, with IFS skill exceeding damped persistence for leads up to 6 weeks. Post-processing forecasts to include the inverse barometer effect, derived from mean sea level pressure forecasts, improves skill for relatively short forecast leads (1–3 weeks). Accounting for vertical land motion of each gauge primarily improves skill for longer leads (3–6 weeks), especially for the Alaskan and Gulf coasts; sea-level trends contribute to reforecast skill for both model and persistence forecasts, primarily for the East and Gulf coasts. Overall, we find that current forecast systems have sufficiently high levels of deterministic and probabilistic skill to be used in support of operational coastal flood guidance on subseasonal timescales.

    Consulter sur os.copernicus.org
  • Liu, H., Zhang, Z., & Liu, B. (2025). Spatial–Temporal Characteristics and Drivers of Summer Extreme Precipitation in the Poyang Lake City Group (PLCG) from 1971 to 2022. Remote Sensing, 17(16). https://doi.org/10.3390/rs17162915

    Global warming has intensified the hydrological cycle, resulting in more frequent extreme precipitation events and altered spatiotemporal precipitation patterns in urban areas, thereby increasing the risk of urban flooding and threatening socio-economic and ecological security. This study investigates the characteristics of summer extreme precipitation in the Poyang Lake City Group (PLCG) from 1971 to 2022, utilizing the China Daily Precipitation Dataset and NCEP/NCAR reanalysis data. Nine extreme precipitation indices were examined through linear trend analysis, Mann–Kendall tests, wavelet transforms, and correlation methods to quantify trends, periodicity, and atmospheric drivers. The key findings include: (1) All indices exhibited increasing trends, with RX1Day and R95p exhibiting significant rises (p < 0.05). PRCPTOT, R20, and SDII also increased, indicating heightened precipitation intensity and frequency. (2) R50, RX1Day, and SDII demonstrated east-high-to-west-low spatial gradients, whereas PRCPTOT and R20 peaked in the eastern and western PLCG. More than over 88% of stations recorded rising trends in PRCPTOT and R95p. (3) Abrupt changes occurred during 1993–2009 for PRCPTOT, R50, and SDII. Wavelet analysis revealed dominant periodicities of 26–39 years, linked to atmospheric oscillations. (4) Strong subtropical highs, moisture convergence, and negative OLR anomalies were closely associated with extreme precipitation. Warmer SSTs in the eastern equatorial Pacific amplified precipitation in preceding seasons. This study provides a scientific basis for flood prevention and climate adaptation in the PLCG and highlighting the region’s vulnerability to monsoonal shifts under global warming. © 2025 by the authors.

  • Zerouali, B., Almaliki, A. H., & Santos, C. A. G. (2025). Flood susceptibility mapping in arid urban areas using SHAP-enhanced stacked ensemble learning: A case study of Jeddah. Journal of Environmental Management, 393. https://doi.org/10.1016/j.jenvman.2025.127128

    Flooding is an escalating hazard in arid and rapidly urbanizing environments such as Jeddah, Saudi Arabia, where the lack of historical flood records and sparse monitoring systems challenge effective risk prediction. To address this gap, this study aims to develop an accurate and interpretable flood susceptibility-mapping framework tailored to data-scarce urban settings. The research integrates a stacked ensemble model—comprising machine learning: XGBoost, CatBoost, and Histogram-based Gradient Boosting (HGB)—with SHapley Additive exPlanations (SHAP) to enhance prediction accuracy and model transparency. Random Forest was excluded from the final model stack due to inferior classification performance. A diverse set of geospatial inputs, including digital elevation model, slope, flow direction, Curve Number, topographic indices, and LULC (from ESRI Sentinel-2) were used as predictors. Furthermore, 92 and 198 flooded and non-flooded points were used for model validation. The model achieved strong predictive performance (AUC = 0.92, Accuracy = 0.82) on the validation set. In the absence of official flood records, model outputs were intersected with road network data to identify 395 road points in highly susceptible zones. Although these points do not represent a formal validation dataset—due to the general lack of detailed flood event records in the region, particularly in relation to infrastructure—they provide a valuable proxy for identifying flood-prone road segments. SHAP explainability analysis revealed that TRI, TPI, and distance to rivers were the most globally influential features, while Curve Number and LULC were key drivers of high-risk predictions. The model mapped 139 km2 (8.7 %) of the area as very high flood susceptibility and 325 km2 (20.3 %) as high susceptibility, outperforming individual learners. These results confirm that stacked ensemble learning, paired with explainable AI and creative validation strategies, can produce reliable flood susceptibility maps even in data-constrained contexts. This framework offers a transferable and scalable solution for flood risk assessment in similar arid and urbanizing environments. © 2025 Elsevier Ltd

  • Mourot, F. M., Irvine, D. J., Remenyi, T. A., Hutley, L. B., Crosbie, R. S., & Moore, C. R. (2025). Producing Hydrological Projections Under Climate Change: A Groundwater-Inclusive Practical Guide. Earth’s Future, 13(8). https://doi.org/10.1029/2025EF006316

    With global warming, the hydrological cycle is intensifying with more frequent and severe droughts and floods, placing water resources and their dependent communities under increasing stress. Guidance and insights into the projection of future water conditions are, therefore, increasingly needed to inform climate change adaptation. Hydrological projections can provide such insights when suitably designed for user needs, produced from the best available climate knowledge, and leverage appropriate hydrological models. However, producing such hydrological projections is a complex process that requires skills and knowledge spanning from the often-siloed disciplines of climate, hydrology, communication, and decision-making. Groundwater projections are still underrepresented compared to surface water projections, despite the importance of groundwater to sustain society and the environment. Accordingly, this paper bridges these silos and fills a gap by providing detailed guidance on the important steps and best practices to develop groundwater-inclusive hydrological projections that can effectively support decision-making. Using an extensive literature review and our practical experience as climate scientists, hydro(geo)logists, numerical modelers, uncertainty experts and decision-makers, here we provide: (a) an overview of climate change hydrological impacts as background knowledge; (b) a step-by-step guide to produce groundwater-inclusive hydrological projections under climate change, targeted to both scientists and water practitioners; (c) a summary of important considerations related to hydrological projection uncertainty; and (d) insights to use hydrological projections and their associated uncertainty for impactful communication and decision-making. By providing this practical guide, our paper addresses a critical interdisciplinary knowledge gap and supports enhanced decision-making and resilience to climate change threats. © 2025 Commonwealth of Australia. Earth Science New Zealand. Acclimatised Pty Ltd and The Author(s). Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union.

  • Ogunbunmi, S., Chen, Y., Zhao, Q., Nagothu, D., Wei, S., Chen, G., & Blasch, E. (2025). Interest Flooding Attacks in Named Data Networking and Mitigations: Recent Advances and Challenges. Future Internet, 17(8). https://doi.org/10.3390/fi17080357

    Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. © 2025 by the authors.

  • Monckeberg, E., & Gómez, S. (2025). Exploring the potential of coastal cities to address climate change towards an inclusive, equitable and politically engaged orientation. Anthropocene Coasts, 8(1). https://doi.org/10.1007/s44218-025-00099-5

    In the context of the global climate crisis, the analysis and strengthening of adaptive capacities in coastal urban environments has become imperative. Nearly 40% of the global population lives within 100 km of the coastline, making them critical research hotspots due to their particular vulnerability. This qualitative literature review takes a transdisciplinary approach and prioritizes research that addresses specific challenges and solutions for these vulnerable environments, with an emphasis on resilience to phenomena such as sea level rise, flooding and extreme weather events. The review analyzes articles that offer a holistic view, encompassing green and blue infrastructures, community needs and governance dynamics. It highlights studies that propose innovative strategies to foster citizen participation and explicitly address aspects such as climate justice. By synthesizing interdisciplinary perspectives and local knowledge, this review aims to provide a comprehensive framework for climate adaptation in coastal urban areas. The findings have the potential to inform public policy and urban planning practices. © The Author(s) 2025.

  • Awad, M. M., & Homayouni, S. (2025). High-Resolution Daily XCH4 Prediction Using New Convolutional Neural Network Autoencoder Model and Remote Sensing Data. Atmosphere, 16(7), 806. https://doi.org/10.3390/atmos16070806

    Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).

    Consulter le document
  • Zhekov, A., Bourgeois, B., & Poulin, M. (2025). Flooding stress influences productivity and modulates biodiversity effects in experimental grassland communities, shaping biodiversity–productivity relationships. American Journal of Botany, 112(7), e70063. https://doi.org/10.1002/ajb2.70063

    Abstract Premise Biodiversity loss and increasing extreme weather events disrupt the functioning of ecosystems and thus their ability to provide services. While the interplay among various climatic constraints, diversity and productivity has received increasing attention in the last decades, the role of flooding has been overlooked. Methods In a greenhouse experiment, we manipulated species richness and water regimes to evaluate the influence of flooding on species diversity–productivity relationships. We measured biomass production and partitioned net biodiversity effects into complementarity and selection effects. To link changes in biodiversity effects to underlying mechanisms, we evaluated the contribution of species richness, species identity, functional diversity and community‐level traits. Results Under flooding, biomass production decreased, and biodiversity effects were less frequently positive. By reducing the incidence of positive complementarity effects, flooding promoted a preponderance of selection effects. Flooding further favored competitive displacement by Phalaris arundinacea ; balanced contributions to selection effects from all functional groups at field capacity subsided under flooding when P. arundinacea became the single dominant species. As a result, its acquisitive leaf trait attributes contributed more to selection effects and biomass production under flooding, while root traits contributed less to complementarity effects at field capacity. Conclusions As an environmental stressor, flooding promoted the dominance of tolerant species and reduced the incidence of complementary species interactions in the experimental plant communities, clearly modulating the linkage between diversity and productivity.

    Consulter sur bsapubs.onlinelibrary.wiley.com
  • Baruah, A., Spies, R., Devi, D., Cohen, S., Aristizabal, F., Nikrou, P., Tian, D., & Pruitt, C. (2025). Predicting synthetic rating curve adjustment factors with explainable machine learning for enhancing the United States operational flood inundation mapping framework. Journal of Hydrology, 662. https://doi.org/10.1016/j.jhydrol.2025.134086

    The increasing threats of global flood risk mandate rapid and accurate high-resolution flood modeling strategies over large scales. In the United States, the National Oceanic and Atmospheric Administration (NOAA) Office of Water Prediction (OWP) has operationalised a Flood Inundation Mapping (FIM) framework utilising the Height Above Nearest Drainage (HAND)-Synthetic Rating Curve (SRC) approach. It translates streamflow into stage and subsequently maps the inundation over the floodplain. It is a low-fidelity FIM framework, suitable for large-scale applications with much less computational effort. The SRCs are calculated for each river segment using Manning's equation; however, uncertainty in Manning's parameters and missing bathymetry impart bias in SRC calculation, and thus in FIM. An SRC adjustment factor (λsrc), introduced by OWP, calibrates SRCs against USGS rating curves, HEC-RAS 1D rating curves, and National Weather Service (NWS)-Categorical Flood Inundation Mapping (CatFIM) locations. Adjusted SRCs improve the FIM predictions but are limited to locations with the above data sources. In this paper, we develop machine learning models to predict the λsrc over the entire United States river network. Results show that the eXtreme Gradient Boosting model yielded the strongest predictability, with an R2 of 0.70. The impact of λsrc on FIM predictions is evaluated for Hurricane Matthew in North Carolina and synthetic flood events in 15 watersheds. For Hurricane Matthew flooding, the mean percentage improvements in Critical Success Index (CSI), Probability of Detection (POD), and F1 Score are 17.5%, 20% and 12.5%, while for synthetic events, the improvements are 2.59%, 4.93%, and 3.03%, respectively. © 2025 The Author(s)

  • Li, Q., Xia, J., Xu, Z., Liang, D., & Hinkelmann, R. (2025). Agent-based vulnerability model for pedestrians exposed to urban floodwaters. Journal of Hydrology, 662. https://doi.org/10.1016/j.jhydrol.2025.134058

    Climate change-induced floods will have a profound impact on densely populated urban areas. The survey results indicate that a substantial proportion of respondents engaged in evacuation behavior during urban flooding events. However, current assessment methods may underestimate the impact of human motions in floodwaters on pedestrian evacuation safety. To quantitively study the dynamic vulnerability of individuals exposed to flooding scenarios, an agent-based vulnerability model was proposed based on mechanics modelling and experimentally calibrating. A full-scale physical testing platform was constructed and utilized to calibrate the proposed model and to determine the stability limits of pedestrian safety in floodwaters. Spatial and temporal dynamic characteristics of pedestrians were analyzed and results reveal significant variations in pedestrian movement and stability. The general temporal trend of movement speed changing as a power function of the specific flood force has been validated. It is also found that pedestrian stability is notably affected by movement in floodwaters, particularly when walking against the flow, which intensifies the risk of instability, leading to vulnerability indices that increase by 123.2 % at a depth of 0.3 m and by 82.7 % at 0.5 m compared to still-water conditions. In contrast, moving with the flow reduces hydrodynamic forces, although the rate of this reduction decreases with greater water depths, dropping to 16.0 % at 0.5 m and 9.7 % at 0.7 m. Additionally, this work provides guidelines for assessing pedestrian evacuation vulnerability that enhances evacuation safety and supports flood management. © 2025 Elsevier B.V.

  • Wassmer, J., Bryant, S., Schimansky, P., Keegan, L. T., Pregnolato, M., Kurths, J., Marwan, N., & Merz, B. (2025). Unveiling hidden risks in healthcare from flood-induced transportation disruption in Germany. Communications Earth and Environment, 6(1). https://doi.org/10.1038/s43247-025-02645-y

    Despite investments in disaster resilience, flooding continues to disrupt healthcare systems, both by limiting access and through failures in the surrounding transportation network. Existing models for mitigation planning often overlook critical dynamics, such as traffic rerouting, particularly at the national scales necessary for effective planning. Here we present a scalable method to identify hospitals at risk of emergency response delays and service disruptions caused by flood-induced traffic impacts. Our approach integrates a regional flood model with a gravity-based traffic model to simulate traffic flow from open-source road data. Our findings reveal hidden risks for hospitals located far from flood zones, showing how flood-related road disruptions and traffic rerouting can reduce access to critical healthcare services. In particular, we found 75 (of 2,475) hospitals at risk of patient surges beyond their regular capacity, driven solely by flood-related traffic disruptions. Of these, a third are more than 10 km from the nearest inundation, suggesting these facilities may be unaware and thus under-prepared — risks that have, until now, remained hidden from assessments. © The Author(s) 2025.

  • Zhang, P., Zhang, C., Zhang, P., Yan, X., & Yang, H. (2025). Optimization of emergency logistics for urban flooding with consideration of rainfall effects. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-09986-w

    Urban flooding frequently causes significant damage to infrastructure and facilities, leading to critical supply shortages in affected regions. Ensuring rapid and efficient distribution of relief supplies remains a key challenge during disaster response operations. This study proposes a two-stage optimization framework for emergency logistics. First, a supply distribution model is developed by integrating resource scarcity indices and disaster severity indices, optimized through a simulated annealing algorithm. Second, a vehicle routing model accounting for rainfall and dynamic vehicle speeds is established, solved using a hybrid Genetic Simulated Annealing algorithm to enhance computational efficiency. Ultimately, through simulation with randomly generated calculation examples, it was found that for the supply distribution model, the allocation model that takes into account both the resource scarcity index and the disaster index is more suitable for scenarios with an uneven distribution of disaster severity. The results of the model that takes into account the resource scarcity index, disaster index and waiting time index shows an improvement of 4% over the model that doesn’t consider the resource scarcity index. The experimental results show that the proposed methodology not only adapts to varying disaster spatial patterns but also balances efficiency and equity under supply constraints, offering a scalable tool for designing resilient urban flood response systems. © The Author(s) 2025.

  • Schulte, L., Santisteban, J. I., Fuller, I. C., & Ballesteros-Cánovas, J. A. (2025). Editorial preface to special issue: Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events. Global and Planetary Change, 254. https://doi.org/10.1016/j.gloplacha.2025.105021

    Floods constitute the most significant natural hazard to societies worldwide. Population growth and unchecked development have led to floodplain encroachment. Modelling suggests that climate change will regionally intensify the threat posed by future floods, with more people in harm's way. From a global change perspective, past flood events and their spatial-temporal patterns are of particular interest because they can be linked to former climate patterns, which can be used to guide future climate predictions. Millennial and centennial time series contain evidence of very rare extreme events, which are often considered by society as ‘unprecedented’. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regime, we can better forecast their future occurrence. This Virtual Special Issue (VSI) entitled Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events comprises 14 papers that focus on how centennial and millennia-scale natural and documentary flood archives help improve future flood science. Specifically, documentation of large and very rare flood episodes challenges society's lack of imagination regarding the scale of flood disasters that are possible (what we term here, the “unknown unknowns”). Temporal and spatial flood behaviour and related climate patterns as well as the reconstruction of flood propagation in river systems are important foci of this VSI. These reconstructions are crucial for the provision of robust and reliable data sets, knowledge and baseline information for future flood scenarios and forecasting. We argue that it remains difficult to establish analogies for understanding flood risk during the current period of global warming. Most studies in this VSI suggest that the most severe flooding occurred during relatively cool climate periods, such as the Little Ice Age. However, flood patterns have been significantly altered by land use and river management in many catchments and floodplains over the last two centuries, thereby obscuring the climate signal. When the largest floods in instrumental records are compared with paleoflood records reconstructed from natural and documentary archives, it becomes clear that precedent floods should have been considered in many cases of flood frequency analysis and flood risk modelling in hydraulic infrastructure. Finally, numerical geomorphological analysis and hydrological simulations show great potential for testing and improving our understanding of the processes and factors involved in the temporal and spatial behaviour of floods. © 2025 The Authors

  • Muhammed, S. P., Holla, B. R. K., Balakrishna, K., & Warrier, A. K. (2025). Developing rejuvenation strategies and artificial flood mitigation plans for Indrani River: a case study. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-12439-z

    Artificial flooding of rainwater is most common in urban areas due to various reasons, such as improper drainage systems, obstruction of natural drainage by building constructions, and encroachment of stormwater nallahs. Flash floods lead to significant losses, disrupt transportation, and cause inconvenience to the public. Udupi, characterized by its porous lateritic strata, undulating topography, and proximity to the sea, experiences artificial flooding during the peak monsoon season in its low-lying areas, primarily due to the overflow of the Indrani River, which is also a potential water resource for Udupi, Karnataka. Currently, the river faces significant challenges due to increasing anthropogenic activities. Revitalizing the Indrani River offers numerous benefits, including its potential use as a drinking water source during periods of water scarcity. This study aims to propose flood and stormwater management measures for the river catchment and to evaluate selected water quality parameters (pH, dissolved oxygen, and conductivity) at fifteen strategic locations along the river course. Higher conductivity observed at downstream stations is attributed to sewage discharge from urban settlements and a sewage treatment plant. The study suggests short-term measures such as targeted clean-up operations and stricter enforcement of pollution control regulations. Additionally, it recommends long-term strategies, including the development of a comprehensive river basin management plan, community engagement initiatives, and improvements to wastewater treatment infrastructure. To maintain the health of the Indrani River, this research emphasizes the importance of continuous monitoring and the implementation of integrated management practices. © The Author(s) 2025.

  • Pedroza, D., Cohn-Haft, M., & Haugaasen, T. (2025). Non-Aquatic Fauna of Amazonian Floodplain Forests and its Responses to Seasonal Flooding. Wetlands, 45(7). https://doi.org/10.1007/s13157-025-01970-4

    The non-aquatic fauna (e.g. insects, birds, mammals) that occupies seasonally flooded floodplain forests in the Amazon is a major component of the region’s biodiversity, and the responses portrayed to cope with this inundation are varied. However, no systematic review of these species, including specialist species (exclusive to this environment), and their responses to seasonal inundation has yet been performed. Here, we provide an up-to-date and thorough examination of research on non-aquatic fauna that utilize Amazonian floodplain forests and their responses to seasonal flooding. We conducted a survey of published and unpublished studies from 1853 to 2023 through the Web of Science and Google Scholar platforms. We found a total of 445 studies, including 11,513 species of non-aquatic animals that inhabit floodplain forests. We identified ten main types of responses to flooding, the three most common being vertical migration, occupation of floating substrates and eggs submerged in a dormant state. Results suggest great behavioral, morphological and physiological plasticity among non-aquatic species, including those that are not floodplain forest specialists. Several types of responses occur independently in widely distinct taxonomic groups, emphasizing convergent strategies to deal with seasonal flooding. Our findings underline the uniqueness of the floodplain fauna and its importance for the regional biodiversity conservation agenda. © The Author(s), under exclusive licence to Society of Wetland Scientists 2025.

  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 19
  • Page 1 de 19
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-09-20 06 h 52 (UTC)

Explorer

Axes du RIISQ

  • 1 - aléas, vulnérabilités et exposition (155)
  • 2 - enjeux de gestion et de gouvernance (105)
  • 3 - aspects biopsychosociaux (185)
  • 4 - réduction des vulnérabilités (87)
  • 5 - aide à la décision, à l’adaptation et à la résilience (118)

Enjeux majeurs

  • Inégalités et événements extrêmes (67)
  • Prévision, projection et modélisation (62)
  • Risques systémiques (40)

Lieux

  • Canada (110)
  • Québec (province) (58)
  • États-Unis (22)
  • Europe (20)

Secteurs et disciplines

  • Nature et Technologie (248)
  • Société et Culture (139)
  • Santé (108)

Types d'événements extrêmes

  • Évènements liés au froid (neige, glace)
  • Inondations et crues (166)
  • Sécheresses et canicules (17)
  • Feux de forêts (8)

Types d'inondations

  • Fluviales (61)
  • Par embâcle (18)
  • Submersion côtière (8)
  • Pluviales (4)

Type de ressource

  • Article de colloque (2)
  • Article de revue (346)
  • Chapitre de livre (4)
  • Livre (3)
  • Prépublication (1)
  • Rapport (2)
  • Thèse (16)

Année de publication

  • Entre 1900 et 1999 (4)
    • Entre 1970 et 1979 (2)
      • 1975 (1)
      • 1977 (1)
    • Entre 1990 et 1999 (2)
      • 1991 (1)
      • 1994 (1)
  • Entre 2000 et 2025 (370)
    • Entre 2000 et 2009 (8)
      • 2000 (1)
      • 2001 (1)
      • 2002 (2)
      • 2003 (2)
      • 2008 (2)
    • Entre 2010 et 2019 (99)
      • 2010 (3)
      • 2012 (4)
      • 2013 (2)
      • 2014 (5)
      • 2015 (9)
      • 2016 (7)
      • 2017 (3)
      • 2018 (30)
      • 2019 (36)
    • Entre 2020 et 2025 (263)
      • 2020 (41)
      • 2021 (32)
      • 2022 (47)
      • 2023 (55)
      • 2024 (45)
      • 2025 (42)
      • 2026 (1)

Langue de la ressource

  • Anglais

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web