Votre recherche
Résultats 618 ressources
-
Abstract Climate change in the Middle East has intensified with rising temperatures, shifting rainfall patterns, and more frequent extreme events. This study introduces the Stacking-EML framework, which merges five machine learning models three meta-learners to predict maximum temperature, minimum temperature, and precipitation using CMIP6 data under SSP1-2.6, SSP2-4.5, and SSP5-8.5. The results indicate that Stacking-EML not only significantly improves prediction accuracy compared to individual models and traditional CMIP6 outputs but also enhances climate projections by integrating multiple ML models, offering more reliable, regionally refined forecasts. Findings show R² improvements to 0.99 for maximum temperature, 0.98 for minimum temperature, and 0.82 for precipitation. Under SSP5-8.5, summer temperatures in southern regions are expected to exceed 45 °C, exacerbating drought conditions due to reduced rainfall. Spatial analysis reveals that Saudi Arabia, Oman, Yemen, and Iran face the greatest heat and drought impacts, while Turkey and northern Iran may experience increased precipitation and flood risks.
-
Abstract. Dissolved organic carbon (DOC) trends, predominantly showing long-term increases in concentration, have been observed across many regions of the Northern Hemisphere. Elevated DOC concentrations are a major concern for drinking water treatment plants, owing to the effects of disinfection byproduct formation, the risk of bacterial regrowth in water distribution systems, and treatment cost increases. Using a unique 30-year data set encompassing both extreme wet and dry conditions in a eutrophic drinking water reservoir in the Great Plains of North America, we investigate the effects of changing source-water and in-lake water chemistry on DOC. We employ novel wavelet coherence analyses to explore the coherence of changes in DOC with other environmental variables and apply a generalized additive model to understand predictor–DOC responses. We found that the DOC concentration was significantly coherent with (and lagging behind) flow from a large upstream mesotrophic reservoir at long (> 18-month) timescales. DOC was also coherent with (lagging behind) sulfate and in phase with total phosphorus, ammonium, and chlorophyll a concentrations at short (≤ 18-month) timescales across the 30-year record. These variables accounted for 56 % of the deviance in DOC from 1990 to 2019, suggesting that water-source and in-lake nutrient and solute chemistry are effective predictors of the DOC concentration. Clearly, climate and changes in water and catchment management will influence source-water quality in this already water-scarce region. Our results highlight the importance of flow management to shallow eutrophic reservoirs; wet periods can exacerbate water quality issues, and these effects can be compounded by reducing inflows from systems with lower DOC. These flow management decisions address water level and flood risk concerns but also have important impacts on drinking water treatability.
-
Abstract Fluvial biogeomorphology has proven to be efficient in understanding the evolution of rivers in terms of vegetation succession and channel adjustment. The role of floods as the primary disturbance regime factor has been widely studied, and our knowledge of their effects on vegetation and channel adjustment has grown significantly in the last two decades. However, cold rivers experiencing ice dynamics (e.g., ice jams and mechanical breakups) as an additional disturbance regime have not yet been studied within a biogeomorphological scope. This study investigated the long‐term effects of ice dynamics on channel adjustments and vegetation trajectories in two rivers with different geomorphological behaviours, one laterally confined (Matapédia River) and one mobile (Petite‐Cascapédia River), in Quebec, Canada. Using dendrochronological analysis, historical data and aerial photographs from 1963 to 2016, this study reconstructed ice jam chronologies, characterized flood regimes and analysed vegetation and channel changes through a photointerpretation approach. The main findings of this study indicate that geomorphological impacts of mechanical ice breakups are not significant at the decadal and reach scales and that they might not be the primary factors of long‐term geomorphological control. However, results have shown that vegetation was more sensitive to ice dynamics. Reaches presenting frequent ice jams depicted high regression rates and turnovers even during years with very low floods, suggesting that ice dynamics significantly increase shear stress on plant patches. This study also highlights the high resiliency of both rivers to ice jam disturbances, with vegetation communities and channel forms recovering within a decade. With the uncertainties following the reach/corridor and decadal scales, future research should focus on long‐term monitoring and refined spatial scales to better understand the mechanisms behind the complex interactions among ice dynamics, vegetation and hydrogeomorphological processes in cold rivers.
-
ABSTRACT Flood risk management (FRM) involves planning proactively for flooding in high‐risk areas to reduce its impacts on people and property. A key challenge for governments pursuing FRM is to pinpoint assets that are highly economically exposed and vulnerable to flood hazards in order to prioritize them in policy and planning. This paper presents a novel flood risk assessment, making use of a dataset that identifies the location, dwelling type, property characteristics, and potential economic losses of Canadian residential properties. The findings reveal that the average annual costs are $1.4B, but most of the risks are concentrated in high‐risk areas. Data gaps are uncovered that justify replication through local validation studies. The results provide a novel evidence base for specific reforms in Canada's approach to FRM, with a focus on insurance that improves both implementation and effectiveness.
-
Abstract Global warming is causing glaciers in the Caucasus Mountains and around the world to lose mass at an accelerated pace. As a result of this rapid retreat, significant parts of the glacierized surface area can be covered with debris deposits, often making them indistinguishable from the surrounding land surface by optical remote-sensing systems. Here, we present the DebCovG-carto toolbox to delineate debris-covered and debris-free glacier surfaces from non-glacierized regions. The algorithm uses synthetic aperture radar-derived coherence images and the normalized difference snow index applied to optical satellite data. Validating the remotely-sensed boundaries of Ushba and Chalaati glaciers using field GPS data demonstrates that the use of pairs of Sentinel-1 images (2019) from identical ascending and descending orbits can substantially improve debris-covered glacier surface detection. The DebCovG-carto toolbox leverages multiple orbits to automate the mapping of debris-covered glacier surfaces. This new automatic method offers the possibility of quickly correcting glacier mapping errors caused by the presence of debris and makes automatic mapping of glacierized surfaces considerably faster than the use of other subjective methods.
-
Abstract Resilience has become a cornerstone for risk management and disaster reduction. However, it has evolved extensively both etymologically and conceptually in time and across scientific disciplines. The concept has been (re)shaped by the evolution of research and practice efforts. Considered the opposite of vulnerability for a long time, resilience was first defined as the ability to resist, bounce back, cope with, and recover quickly from the impacts of hazards. To avoid the possible return to conditions of vulnerability and exposure to hazards, the notions of post-disaster development, transformation, and adaptation (build back better) and anticipation, innovation, and proactivity (bounce forward) were then integrated. Today, resilience is characterized by a multitude of components and several classifications. We present a selection of 25 components used to define resilience, and an interesting linkage emerges between these components and the dimensions of risk management (prevention, preparedness, response, and recovery), offering a perspective to strengthen resilience through the development of capacities. Despite its potential, resilience is subject to challenges regarding its operationalization, effectiveness, measurement, credibility, equity, and even its nature. Nevertheless, it offers applicability and opportunities for local communities as well as an interdisciplinary look at global challenges.
-
Abstract The highly fissile lithology of the rockwalls and the diversity of mass‐wasting processes provide a specific character to the active talus slopes of the northern Gaspé Peninsula since deglaciation. At a regional scale, the geology of the rockwalls, the patterns and modalities of deglaciation and the evolution towards a cold temperate morphoclimatic regime in a maritime context still influence the geomorphological dynamics of scree slopes today. At a local scale, the south–north orientation of the main coastal valleys influences insolation and exposure to prevailing winds, which in turn influence the snow cover regime and the occurrence of freeze–thaw cycles. The statistical analyses carried out from the mapping of 43 talus slopes and their geometric variables allowed the identification of significant environmental factors for the characterization of the dominant geomorphic processes: snow avalanches, frost‐coasted clast flows, debris flows and rockfalls. Slope aspect appears to be a key parameter in the nature of the processes acting on the talus slopes. East‐ and north‐facing talus slopes are generally covered by a significant snowpack in winter and the dominant processes are snow avalanches and debris flows. West‐ and south‐facing talus slopes face prevailing winds and insolation and are subject to frost‐coated clast flows, the main driver for forest regression, and rockfalls. However, the evolution of scree slopes in forested environments remains extremely complex due to the multiscale components that affect their evolution in the short, medium and long term.
-
Abstract Overcooled talus slopes are generally described as islands of sporadic permafrost below the lower alpine limit of permafrost. The negative thermal anomaly of the ground is mainly consecutive to the internal ventilation of the deposit, but it is also conditioned by multiple factors as topography, slope aspect and incline, openwork structure and coarseness of the deposit, air temperature, solar radiation and wind regime. Therefore, the study of the spatiotemporal dynamics of ventilation processes allows a better understanding of the phenomenon. At Cannon Cliff, New Hampshire (USA), several field visits and environmental monitoring allowed us to describe the varying nature and significance of the ventilation mechanisms that can be observed at the ground surface and associated with both the intensity and direction of the airflows in a talus debris accumulation/protalus rampart system. The thermal negative anomalies are strong enough to lower the ground temperature to the point of preserving ice during the late spring and summer seasons. The monitoring of the gradient between external (air) and internal (talus) temperatures coupled with several dendroecological and geomorphological analyses provided a complete environmental picture of the impacts, feedback and extent of the phenomenon.
-
Agriculture is the traditional and leading field of economy of Tetritskaro Municipality, but faces the challenge of changing climate. The study investigates male and female farmers’ perception of climate change issues in Tetritskaro, their main source of information, adaptation measures choosen and their needs. Climate change data available in Tetritskaro focused on characteristic extreme weather events coupled with face-to-face interviews from 254 farmers (male - 53%, female - 47%) was analyzed. The study revealed that men and women have more or less similar perceptions of climate change issues. For male farmers, the main source of information on climate, seasonal prediction and weather forecast is conversations with fellow farmers, and for female farmers it is indigenous knowledge of the local environment. Male and female farmers, have adapted to the changes in climate similarly applying measures such as pesticides, fertilizer and irrigation, early sowing, and earlier harvest, while the exchange of information between fellow farmers, use of various hail protection products and crop diversification techniques is more frequent among male farmers. Farmers expressed the need for low interest loans to purchase agricultural products, equipment and restore/create windbreak zones. Most of the male farmers indicate the need for introduction new technologies, while female farmers are more in need of information and training in agricultural activities. The study shows the need for development of climate change adaptation policies and interventions in Tetritskaro. Obtained results can be used not only in other agricultural regions of Georgia, but in other countries with the same problems. , Agriculture is the traditional and leading field of economy of Tetritskaro Municipality, but faces the challenge of changing climate. The study investigates male and female farmers’ perception of climate change issues in Tetritskaro, their main source of information, adaptation measures choosen and their needs. Climate change data available in Tetritskaro focused on characteristic extreme weather events coupled with face-to-face interviews from 254 farmers (male - 53%, female - 47%) was analyzed. The study revealed that men and women have more or less similar perceptions of climate change issues. For male farmers, the main source of information on climate, seasonal prediction and weather forecast is conversations with fellow farmers, and for female farmers it is indigenous knowledge of the local environment. Male and female farmers, have adapted to the changes in climate similarly applying measures such as pesticides, fertilizer and irrigation, early sowing, and earlier harvest, while the exchange of information between fellow farmers, use of various hail protection products and crop diversification techniques is more frequent among male farmers. Farmers expressed the need for low interest loans to purchase agricultural products, equipment and restore/create windbreak zones. Most of the male farmers indicate the need for introduction new technologies, while female farmers are more in need of information and training in agricultural activities. The study shows the need for development of climate change adaptation policies and interventions in Tetritskaro. Obtained results can be used not only in other agricultural regions of Georgia, but in other countries with the same problems.