Votre recherche
Résultats 617 ressources
-
Nature-based Solutions (NbS) for coastal protection have been widely recognized as sustainable, economical, and eco-friendly alternatives to conventional grey structures, particularly under the threat of climate change (Temmerman et al., 2013). Living shorelines are a form of NbS, which incorporate natural elements (such as saltmarshes) that provide flood and erosion risk management benefits. Climate change impacts, such as rising sea levels and reducing sea-ice cover (Savard et al., 2016), are increasingly motivating communities in Canada to consider incorporating living shorelines in coastal protection schemes. The efficacy of wave energy dissipation by vegetation depends on both hydrodynamic conditions and plant characteristics. However, plant parameters, such as standing biomass exhibit seasonal fluctuations, leading to corresponding variations in attenuation capacity (Schulze et al., 2019). Hence, the design of NbS utilizing saltmarsh vegetation must account for seasonal variations to ensure sustained efficacy, especially within the context of Canadian regional climates, which are typically characterized by extended, stormy winters and shorter summer seasons. Few studies have quantified wave attenuation by real saltmarsh vegetation in large-scale laboratory facilities (Möller et al., 2014; Maza et al., 2015; Ghodoosipour et al., 2022), particularly for species native to the east coast of Canada. There is a knowledge gap on how seasonality affects wave attenuation by saltmarsh vegetation and how attenuation varies from the lower marsh to the higher marsh depending on species-specific plant traits. Research is needed to bridge this gap and develop technical guidance for the design of performant living shorelines in Canada.
-
Nature-based solutions (NbS) for coastal protection has recently gained increased attention worldwide as a sustainable, economical and eco-friendly alternative to conventional grey structures, particularly under the threat of climate change (Temmerman et al. 2013). Wave energy dissipation by vegetation can be parameterized by the total horizontal force acting on the plant; expressed using a Morison-type equation considering only the form drag component (Dalrymple et al. 1984). Modelling wave-vegetation interaction is challenging in a laboratory environment (Lara et al. 2016) and it is difficult to accomplish a realistic representation of a plant’s biomechanical behavior and geometry using plant mimics or surrogates. Few studies have modelled real saltmarsh vegetation in large scale laboratory facilities (Moller et al. 2014; Maza et al. 2015) and quantified wave attenuation, particularly for engineered living shorelines (Maryland DoE, 2013). Further research is needed, particularly in the Canadian context, to investigate the capacity of different saltmarsh species to effectively attenuate waves and wave runup under storm conditions, to examine the plant’s drag coefficient and to bridge the gap to develop technical design specifications for the detailed design of living shorelines.
-
Scour is a hydraulic risk threatening the stability of bridges in fluvial and coastal areas. Therefore, developing permanent and real-time monitoring techniques is crucial. Recent advances in strain measurements using fiber optic sensors allow new opportunities for scour monitoring. In this study, the innovative optical frequency domain reflectometry (OFDR) was used to evaluate the effect of scour by performing distributed strain measurements along a rod under static lateral loads. An analytical analysis based on the Winkler model of the soil was carefully established and used to evaluate the accuracy of the fiber optic sensors and helped interpret the measurements results. Dynamic tests were also performed and results from static and dynamic tests were compared using an equivalent cantilever model.
-
Local scour is the removal of soil around bridge foundations under the erosive action of flowing water. This hydraulic risk has raised awareness of the need for developing continuous monitoring techniques to estimate scour depth around bridge piers and abutments. One of the emerging techniques is based on monitoring the vibration frequency of either bridge piers or a driven sensor in the riverbed. The sensor proposed in this study falls into the second category. Some unresolved issues are investigated: the effect of the geometry and material of the sensor, the effect of the embedded length and the effect of soil type. To this end, extensive laboratory tests are performed using rods of different materials, with various geometries and lengths. These tests are conducted in both dry sand and a soft clayey soil. Since the sensor will be placed in the riverbed, it is crucial to evaluate the effect of immersed conditions on its response. A numerical 3D finite-element model was developed and compared against experimental data. This model was then used to compute the ‘wet’ frequencies of the sensor. Finally, based on both the experimental and numerical results, an equivalent cantilever model is proposed to correlate the variation of the frequency of the sensor to the scour depth.
-
Abstract Rivers typically present heterogeneous bed material, but the effects of sediment nonuniformity on river bar characteristics are still unclear. This work investigates the impact of sediment size heterogeneity on alternate bars with a morphodynamic numerical model. The model is first used to reproduce a laboratory experiment showing alternate bar formation with nonuniform bed material. Subsequently, the influence of sediment size heterogeneity on alternate bars is investigated distinguishing hybrid from free bars, definition based on the presence/absence of morphodynamic forcing, considering the results of nine scenarios. In four of them, a transverse obstacle is used to generate forcing. The computations are carried out with the Telemac‐Mascaret system solving the two‐dimensional shallow‐water equations with a finite element approach, accounting for horizontal and vertical sediment sorting processes. The results show that sediment heterogeneity affects free migrating and hybrid bars in a different way. The difference lies in the presence/absence of a migration front, so that distinct relations between bed topography, bed shear stress, and sediment sorting are obtained. Sediment sorting and associated planform redistribution of bed roughness only slightly modify free migrating bar morphodynamics, whereas hybrid bars are greatly impacted, with decreased amplitude and increased wavelength. Increased sediment size heterogeneity increases the degree of sediment sorting, while the sorting pattern remains the same for both free and hybrid bars. Moreover, it produces averagely higher, longer, and faster free bars, while in the case of hybrid bars their wavelength is increased but no general trend can be determined for their amplitude. , Key Points Free bars and hybrid bars show distinct topography, bed shear stress, sediment transport, and sediment sorting patterns Increased sediment heterogeneity induces longer free/hybrid bars, higher free bars but no general trend for the hybrid bar amplitude Sediment sorting does not impact the averaged free bar characteristics, while hybrid bars become longer and damped
-
This paper presents the extension of the monolayer snow model of a semi-distributed hydrological model (HYDROTEL) to a multilayer model that considers snow to be a combination of ice and air, while accounting for freezing rain. For two stations in Yukon and one station in northern Quebec, Canada, the multilayer model achieves high performances during calibration periods yet similar to the those of the monolayer model, with KGEs of up to 0.9. However, it increases the KGE values by up to 0.2 during the validation periods. The multilayer model provides more accurate estimations of maximum SWE and total spring snowmelt dates. This is due to its increased sensitivity to thermal atmospheric conditions. Although the multilayer model improves the estimation of snow heights overall, it exhibits excessive snow densities during spring snowmelt. Future research should aim to refine the representation of snow densities to enhance the accuracy of the multilayer model. Nevertheless, this model has the potential to improve the simulation of spring snowmelt, addressing a common limitation of the monolayer model.
-
In Nordic watersheds, estimation of the dynamics of snow water equivalent (SWE) represents a major step toward a satisfactory modeling of the annual hydrograph. For a multilayer, physically-based snow model like MASiN (Modèle Autonome de Simulation de la Neige), the number of modeled snow layers can affect the accuracy of the simulated SWE. The objective of this study was to identify the maximum number of snow layers (MNSL) that would define the trade-off between snowpack stratification and SWE modeling accuracy. Results indicated that decreasing the MNSL reduced the SWE modeling accuracy since the thermal energy balance and the mass balance were less accurately resolved by the model. Nevertheless, from a performance standpoint, SWE modeling can be accurate enough with a MNSL of two (2), with a substantial performance drop for a MNSL value of around nine (9). Additionally, the linear correlation between the values of the calibrated parameters and the MNSL indicated that reducing the latter in MASiN increased the fresh snow density and the settlement coefficient, while the maximum radiation coefficient decreased. In this case, MASiN favored the melting process, and thus the homogenization of snow layers occurred from the top layers of the snowpack in the modeling algorithm.
-
In this work, we develop an enhanced particle shifting strategy in the framework of weakly compressible δ+-SPH method. This technique can be considered as an extension of the so-called improved particle shifting technology (IPST) proposed by Wang et al. (2019). We introduce a new parameter named “ϕ” to the particle shifting formulation, on the one hand to reduce the effect of truncated kernel support on the formulation near the free surface region, on the other hand, to deal with the problem of poor estimation of free surface particles. We define a simple criterion based on the estimation of particle concentration to limit the error’s accumulation in time caused by the shifting in order to achieve a long time violent free surface flows simulation. We propose also an efficient and simple concept for free surface particles detection. A validation of accuracy, stability and consistency of the presented model was shown via several challenging benchmarks.
-
The slide of granular material in nature and engineering can happen under air (subaerial), under a liquidlike water (submerged), or a transition between these two regimes, where a subaerial slide enters a liquid and becomes submerged. Here, we experimentally investigate these three slide regimes (i.e., subaerial, submerged, and transitional) in two dimensions, for various slope angles, material types, and bed roughness. The goal is to shed light on the complex morphodynamics and flow structure of these granular flows and also to provide comprehensive benchmarks for the validation and parametrization of the numerical models. The slide regime is found to be a major controller of the granular morphodynamics (e.g., shape evolution and internal flow structure). The time history of the runout distance for the subaerial and submerged cases present a similar three-phase trend (with acceleration, steady flow, and deceleration phases) tough with different spatiotemporal scales. Compared to the subaerial cases, the submerged cases show longer runout time and shorter final runout distances. The transitional trends, however, show additional deceleration and reacceleration. The observations suggest that the impact of slide angle, material type, and bed roughness on the morphodynamics is less significant where the material interacts with water. Flow structure, extracted using a granular particle image velocimetry technique, shows a relatively power-law velocity profile for the subaerial condition and strong circulations for the submerged condition. An unsteady theoretical model based on the µ(I) rheology is developed and is shown to be effective in the prediction of the average velocity of the granular mass.
-
Abstract Landslides, which are the sources of most catastrophic natural disasters, can be subaerial (dry), submerged (underwater), or semi‐submerged (transitional). Semi‐submerged or transitional landslides occur when a subaerial landslide enters water and turns to submerged condition. Predicting the behavior of such a highly dynamic multi‐phase granular flow system is challenging, mainly due to the water entry effects, such as wave impact and partial saturation (and resulted cohesion). The mesh‐free particle methods, such as the moving particle semi‐implicit (MPS) method, have proven their capabilities for the simulation of the highly dynamic multiphase systems. This study develops and evaluates a numerical model, based on the MPS particle method in combination with the μ ( I ) rheological model, to simulate the morphodynamic of the granular mass in semi‐submerged landslides in two and three dimensions. An algorithm is developed to consider partial saturation (and resulting cohesion) during the water entry. Comparing the numerical results with the experimental measurements shows the ability of the proposed model to accurately reproduce the morphological evolution of the granular mass, especially at the moment of water entry.