Votre recherche
Résultats 843 ressources
-
Abstract Analyzing intra-annual stream flow can reveal the main causes for runoff changes and the contributions of climate variability and human activities. For this purpose, the Mann–Kendall and cumulative rank difference (CRD) tests, and the double mass curve method, were applied to a time series of hydro-meteorological variables from 1971 to 2010 in the Tajan River basin in Iran. Results indicated that runoff changes in the wet and dry seasons after 1999 had significant respective decreasing and increasing trends, at the 0.01 confidence level, due to dam construction. In the pre-dam period (1991–1998), the results of the double mass curve method showed that climate variability and human activities contributed 57.76% and 42.24%, respectively, to the runoff decrease during the wet season. For the post-dam period (1999–2010), climate variability and anthropogenic activities contributed 24.68% and 75.32%, respectively, to the wet season runoff decrease of 116.55 mm. On the other hand, in the same period during the dry season, climate variability contributed −30.68% and human activities contributed 130.68% to the runoff increase of 41.45 mm. It is evident that runoff changes in both wet and dry seasons were mainly due to human activities associated with dam construction to meet water supply demands for agriculture.
-
Watershed runoff is closely related to land use but this influence is difficult to quantify. This study focused on the Chaudière River watershed (Québec,...
-
-
Purpose Few people living in informal settlements in the Global South spontaneously claim that they are “resilient” or “adapting” to disaster risk or climate change. Surely, they often overcome multiple challenges, including natural hazards exacerbated by climate change. Yet their actions are increasingly examined through the framework of resilience, a notion developed in the North, and increasingly adopted in the South. To what extent eliminate’ do these initiatives correspond to the concepts that scholars and authorities place under the resilience framework? Design/methodology/approach Three longitudinal case studies in Yumbo, Salgar and San Andrés (Colombia) serve to investigate narratives of disaster risks and responses to them. Methods include narrative analysis from policy and project documents, presentations, five workshops, six focus groups and 24 interviews. Findings The discourse adopted by most international scholars and local authorities differs greatly from that used by citizens to explain risk and masks the politics involved in disaster reduction and the search for social justice. Besides, narratives of social change, aspirations and social status are increasingly masked in disaster risk explanations. Tensions are also concealed, including those regarding the winners and losers of interventions and the responsibilities for disaster risk reduction. Originality/value Our findings confirm previous results that have shown that the resilience framework contributes to “depoliticize” the analysis of risk and serves to mask and dilute the responsibility of political and economic elites in disaster risk creation. But they also show that resilience fails to explain the type of socioeconomic change that is required to reduce vulnerabilities in Latin America.
-
The climate crisis not only has significant impacts on biodiversity and the physical health of humans, but its ramifications are also affecting people’s mental health. Eco-anxiety, or the emotions that emerge with the awareness of climate change and the apprehension of its detrimental effects, has been investigated in adults and adolescents, but much less attention has been given to the impacts on children’s mental health and well-being. Initial evidence confirms that youth are significantly concerned about climate change, but few studies have investigated the resulting emotional responses of children and the role of their parents in tempering these, especially using qualitative methodologies. The present study used a descriptive qualitative design with a convenience sample of parents and child dyads, assessed separately. Children’s ( n = 15, ages 8–12 years) experiences were explored using semi-structured interviews and their parents’ ( n = 12) perceptions were captured using a survey with closed and open-ended questions. A reflexive thematic analysis was used to analyze the interview data, and content analysis was used to investigate parent-child experiences. Three themes emerged from the thematic analysis: 1. children’s understanding of climate change, 2. their emotional reaction to climate change, and 3. their coping mechanisms to deal with these emotions. The comparative content analysis revealed that parents who were aware that their children had concerns about climate change, had children who used more adaptive coping mechanisms. The results of this qualitative study contribute to a better understanding of children’s emotional experience of the awareness of climate change in Canada and how they cope with these emotions. Furthermore, the results provide insight into the role parents might play in helping their children cope with their feelings.
-
Abstract Extreme precipitation events can have a significant impact on the environment, agriculture, economy and safety, making close monitoring of their short‐ and long‐term trends essential for the development of effective mitigation and adaptation strategies. In this study, we analysed 16 in situ observation datasets from four different climate zones in Algeria, spanning from 1969 to 2021. The trend analysis was conducted using the original Mann–Kendall test and seven modified tests to eliminate the effects of short‐term persistence. Our findings reveal a significant increasing trend of extreme precipitation variability for most stations in the Warm Mediterranean climate zone, except for the Consecutive dry days index, which showed a negative trend for the same zone, while stations in the Cold/Warm semi‐arid climate and Cold desert climate (Bwk) zones showed a decreasing trend. Additionally, all index series with significant long‐term trends were affected by a significant shift in their means, which was confirmed by both the Lombard and Pettitt tests. However, when we used the modified MPT and the test eliminating the effects of long‐term persistence, the significance of the shifts and the trend decreased. Our results suggest that while extreme precipitation events have been increasing in some parts of Algeria; the trend may not be statistically significant in the long‐run, indicating the necessity of revisiting and refreshing the findings of previous studies for a more current perspective.
-
Anthropogenic climate change is currently driving environmental transformation on a scale and at a pace that exceeds historical records. This represents an undeniably serious challenge to existing social, political, and economic systems. Humans have successfully faced similar challenges in the past, however. The archaeological record and Earth archives offer rare opportunities to observe the complex interaction between environmental and human systems under different climate regimes and at different spatial and temporal scales. The archaeology of climate change offers opportunities to identify the factors that promoted human resilience in the past and apply the knowledge gained to the present, contributing a much-needed, long-term perspective to climate research. One of the strengths of the archaeological record is the cultural diversity it encompasses, which offers alternatives to the solutions proposed from within the Western agro-industrial complex, which might not be viable cross-culturally. While contemporary climate discourse focuses on the importance of biodiversity, we highlight the importance of cultural diversity as a source of resilience.
-
Excluding Antarctica and Greenland, 3.8% of the world’s glacier area is concentrated in Chile. The country has been strongly affected by the mega drought, which affects the south-central area and has produced an increase in dependence on water resources from snow and glacier melting in dry periods. Recent climate change has led to an elevation of the zero-degree isotherm, a decrease in solid-state precipitation amounts and an accelerated loss of glacier and snow storage in the Chilean Andes. This situation calls for a better understanding of future water discharge in Andean headwater catchments in order to improve water resources management in glacier-fed populated areas. The present study uses hydrological modeling to characterize the hydrological processes occurring in a glacio-nival watershed of the central Andes and to examine the impact of different climate change scenarios on discharge. The study site is the upper sub-watershed of the Tinguiririca River (area: 141 km2), of which nearly 20% is covered by Universidad Glacier. The semi-distributed Snowmelt Runoff Model + Glacier (SRM+G) was forced with local meteorological data to simulate catchment runoff. The model was calibrated on even years and validated on odd years during the 2008–2014 period and found to correctly reproduce daily runoff. The model was then forced with downscaled ensemble projected precipitation and temperature series under the RCP 4.5 and RCP 8.5 scenarios, and the glacier adjusted using a volume-area scaling relationship. The results obtained for 2050 indicate a decrease in mean annual discharge (MAD) of 18.1% for the lowest emission scenario and 43.3% for the most pessimistic emission scenario, while for 2100 the MAD decreases by 31.4 and 54.2%, respectively, for each emission scenario. Results show that decreasing precipitation lead to reduced rainfall and snowmelt contributions to discharge. Glacier melt thus partly buffers the drying climate trend, but our results show that the peak water occurs near 2040, after which glacier depletion leads to reducing discharge, threatening the long-term water resource availability in this region.
-
Wetlands play an important role in preventing extreme low flows in rivers and groundwater level drawdowns during drought periods. This hydrological function could become increasingly important under a warmer climate. Links between peatlands, aquifers, and rivers remain inadequately understood. The objective of this study was to evaluate the hydrologic functions of the Lanoraie peatland complex in southern Quebec, Canada, under different climate conditions. This peatland complex has developed in the beds of former fluvial channels during the final stages of the last deglaciation. The peatland covers a surface area of ~76 km2 and feeds five rivers. Numerical simulations were performed using a steady-state groundwater flow model. Results show that the peatland contributes on average to 77% of the mean annual river base flow. The peatland receives 52% of its water from the aquifer. Reduced recharge scenarios (−20 and −50% of current conditions) were used as a surrogate of climate change. With these scenarios, the simulated mean head decreases by 0.6 and 1.6 m in the sand. The mean river base flow decreases by 16 and 41% with the two scenarios. These results strongly underline the importance of aquifer-peatland-river interactions at the regional scale. They also point to the necessity of considering the entire hydrosystem in conservation initiatives.
-
Cold region hydrology is conditioned by distinct cryospheric and hydrological processes. While snowmelt is the main contributor to both surface and subsurface flows, seasonally frozen soil also influences the partition of meltwater and rain between these flows. Cold regions of the Northern Hemisphere midlatitudes have been shown to be sensitive to climate change. Assessing the impacts of climate change on the hydrology of this region is therefore crucial, as it supports a significant amount of population relying on hydrological services and subjected to changing hydrological risks. We present an exhaustive review of the literature on historical and projected future changes on cold region hydrology in response to climate change. Changes in snow, soil, and streamflow key metrics were investigated and summarized at the hemispheric scale, down to the basin scale. We found substantial evidence of both historical and projected changes in the reviewed hydrological metrics. These metrics were shown to display different sensitivities to climate change, depending on the cold season temperature regime of a given region. Given the historical and projected future warming during the 21st century, the most drastic changes were found to be occurring over regions with near-freezing air temperatures. Colder regions, on the other hand, were found to be comparatively less sensitive to climate change. The complex interactions between the snow and soil metrics resulted in either colder or warmer soils, which led to increasing or decreasing frost depths, influencing the partitioning rates between the surface and subsurface flows. The most consistent and salient hydrological responses to both historical and projected climate change were an earlier occurrence of snowmelt floods, an overall increase in water availability and streamflow during winter, and a decrease in water availability and streamflow during the warm season, which calls for renewed assessments of existing water supply and flood risk management strategies.
-
The deterioration of anhydrite rock exposed to a freeze–thaw environment is a complex process. Therefore, this paper systematically investigated the physical and mechanical evolutions of freeze–thawed anhydrite rock through a series of multi-scale laboratory tests. Meanwhile, the correlation between pore structure and macroscopic mechanical parameters was discussed, and the deterioration mechanisms of anhydrite rock under freeze–thaw cycles were revealed. The results show that with the increase in freeze–thaw processes, the mechanical strength, elastic modulus, cohesion, proportions of micropores (r ≤ 0.1 μm), and PT-Ipore throat (0–0.1 μm) decrease exponentially. In comparison, the mass variation, proportions of mesopores (0.1 μm < r < 1 μm), macropores (r ≥ 1 μm), and PT-II pore throat (0.1–4 μm) increase exponentially. After 120 cycles, the mean porosity increases by 66.27%, and there is a significant honeycomb and pitted surface phenomenon. Meanwhile, as the freeze–thaw cycles increase, the frost resistance coefficient decreases, while the damage variable increases. The correlation analysis between pore structure and macroscopic mechanical parameters shows that macropores play the most significant role in the mechanical characteristic deterioration of freeze–thawed anhydrite rock. Finally, it is revealed that the water–rock expansion and water dissolution effects play a crucial role in the multi-scale damage of anhydrite rock under the freeze–thaw environment.
-
Abstract Surface conditions are known to mediate the impacts of climate warming on permafrost. This calls for a better understanding of the environmental conditions that control the thermal regime and the depth of the active layer, especially within heterogeneous tundra landscapes. This study analyzed the spatial relationships between thaw depths, ground surface temperature (GST), and environmental conditions in a High Arctic tundra environment at Bylot Island, Nunavut, Canada. Measurements were distributed within the two dominant landforms, namely earth hummocks and low‐center polygons, and across a topographic gradient. Our results revealed that GST and thaw depth were highly heterogeneous, varying by up to 3.7°C and by more than 20 cm over short distances (<1 m) within periglacial landforms. This microscale variability sometimes surpassed the variability at the hillslope scale, especially in summer. Late‐winter snowpack thickness was found to be the prime control on the spatial variability in winter soil temperatures due to the highly heterogeneous snow cover induced by blowing snow, and this thermal effect carried over into summer. However, microtopography was the predominant driver of the spatial variability in summer GST, followed by altitude and moss thickness. In contrast, the spatial variability in thaw depth was influenced predominantly by variations in moss thickness. Hence, summer microclimate conditions dominated active layer development, but a thicker snowpack favored soil cooling in the following summer, due to the later disappearance of snow cover. These results enhance our understanding of High Arctic tundra environments and highlight the complexity of considering surface feedback effects in future projections of permafrost states within heterogeneous tundra landscapes.