Votre recherche
Résultats 843 ressources
-
Abstract This study compares the impacts of climate, agriculture and wetlands on the spatio-temporal variability of seasonal daily minimum flows during the period 1930–2019 in 17 watersheds of southern Quebec (Canada). In terms of spatial variability, correlation analysis revealed that seasonal daily minimum flows were mainly negatively correlated with the agricultural surface area in watersheds in spring, summer and fall. In winter, these flows were positively correlated with the wetland surface area and March temperatures but negatively correlated with snowfall. During all four seasons, spatial variability was characterized by higher daily minimum flow values on the north shore (smaller agricultural surface area and larger wetland surface area) than those on the south shore. As for temporal variability, the application of six tests of the long-term trend analysis showed that most agricultural watersheds are characterized by a significant increase in flows during the four seasons due to the reduction in agricultural area, thus favoring water infiltration, and increased rainfall in summer and fall. On the other hand, the reduction in the snowfall resulted in a reduction in summer daily minimum flows observed in several less agricultural watersheds.
-
Several statistical methods were used to analyze the spatio-temporal variability of daily minimum extreme flows (DMEF) in 17 watersheds—divided into three homogenous hydroclimatic regions of southern Quebec—during the transitional seasons (spring and fall), during the 1930–2019 period. Regarding spatial variability, there was a clear difference between the south and north shores of the St. Lawrence River, south of 47° N. DMEF were lower in the more agricultural watersheds on the south shore during transitional seasons compared to those on the north shore. A correlation analysis showed that this difference in flows was mainly due to more agricultural areas ((larger area (>20%) on the south than on the north shore (<5%)). An analysis of the long-term trend of these flows showed that the DMEF of south-shore rivers have increased significantly since the 1960s, during the fall (October to December), due to an increase in rainfall and a reduction in cultivated land, which increased the infiltration in the region. Although there was little difference between the two shores in the spring (April to June), we observed a decrease in minimum extreme flows in half (50%) of the south-shore rivers located north of 47° N.
-
Studies show associations between prenatal maternal stress (PNMS) and child autism, with little attention paid to PNMS and autism in young adulthood. The broad autism phenotype (BAP), encompassing sub-clinical levels of autism, includes aloof personality, pragmatic language impairment and rigid personality. It remains unclear whether different aspects of PNMS explain variance in different BAP domains in young adult offspring. We recruited women who were pregnant during, or within 3 months of, the 1998 Quebec ice storm crisis, and assessed three aspects of their stress (i.e., objective hardship, subjective distress and cognitive appraisal). At age 19, the young adult offspring (n = 33, 22F / 11M) completed a BAP self-report. Linear and logistic regressions were implemented to examine associations between PNMS and BAP traits. Up to 21.4% of the variance in BAP total score and in BAP three domains tended to be explained by at least one aspect of maternal stress, For example, 16.8% of the variance in aloof personality tended to be explained by maternal objective hardship; 15.1% of the variance in pragmatic language impairment tended to be explained by maternal subjective distress; 20.0% of the variance in rigid personality tended to be explained by maternal objective hardship and 14.3% by maternal cognitive appraisal. Given the small sample size, the results should be interpreted with caution. In conclusion, this small prospective study suggests that different aspects of maternal stress could have differential effects on different components of BAP traits in young adults.
-
Abstract Studies have shown that prenatal maternal stress (PNMS) affects brain structure and function in childhood. However, less research has examined whether PNMS effects on brain structure and function extend to young adulthood. We recruited women who were pregnant during or within 3 months following the 1998 Quebec ice storm, assessed their PNMS, and prospectively followed‐up their children. T1‐weighted magnetic resonance imaging (MRI) and resting‐state functional MRI were obtained from 19‐year‐old young adults with ( n = 39) and without ( n = 65) prenatal exposure to the ice storm. We examined between‐group differences in gray matter volume (GMV), surface area (SA), and cortical thickness (CT). We used the brain regions showing between‐group GMV differences as seeds to compare between‐group functional connectivity. Within the Ice Storm group, we examined (1) associations between PNMS and the atypical GMV, SA, CT, and functional connectivity, and (2) moderation by timing of exposure. Primarily, we found that, compared to Controls, the Ice Storm youth had larger GMV and higher functional connectivity of the anterior cingulate cortex, the precuneus, the left occipital pole, and the right hippocampus; they also had larger CT, but not SA, of the left occipital pole. Within the Ice Storm group, maternal subjective distress during preconception and mid‐to‐late pregnancy was associated with atypical left occipital pole CT. These results suggest the long‐lasting impact of disaster‐related PNMS on child brain structure and functional connectivity. Our study also indicates timing‐specific effects of the subjective aspect of PNMS on occipital thickness.
-
Abstract Several studies have reported the factor structure of posttraumatic stress disorder (PTSD) using confirmatory factor analysis (CFA). The results show models with different number of factors, high correlations between factors, and symptoms that belong to different factors in different models without affecting the fit index. These elements could suppose the existence of considerable item cross-loading, the overlap of different factors or even the presence of a general factor that explains the items common source of variance. The aim is to provide new evidence regarding the factor structure of PTSD using CFA and exploratory structural equation modeling (ESEM). In a sample of 1,372 undergraduate students, we tested six different models using CFA and two models using ESEM and ESEM bifactor analysis. Trauma event and past-month PTSD symptoms were assessed with Life Events Checklist for DSM-5 (LEC–5) and PTSD Checklist for DSM-5 (PCL–5). All six tested CFA models showed good fit indexes (RMSEA = .051–.056, CFI = .969–.977, TLI = .965–.970), with high correlations between factors ( M = .77, SD = .09 to M = .80, SD = .09). The ESEM models showed good fit indexes (RMSEA = .027–.036, CFI = .991–.996, TLI = .985–.992). These models confirmed the presence of cross-loadings on several items as well as loads on a general factor that explained 76.3% of the common variance. The results showed that most of the items do not meet the assumption of dimensional exclusivity, showing the need to expand the analysis strategies to study the symptomatic organization of PTSD.
-
Abstract. Climate change impact studies require a reference climatological dataset providing a baseline period to assess future changes and post-process climate model biases. High-resolution gridded precipitation and temperature datasets interpolated from weather stations are available in regions of high-density networks of weather stations, as is the case in most parts of Europe and the United States. In many of the world's regions, however, the low density of observational networks renders gauge-based datasets highly uncertain. Satellite, reanalysis and merged product datasets have been used to overcome this deficiency. However, it is not known how much uncertainty the choice of a reference dataset may bring to impact studies. To tackle this issue, this study compares nine precipitation and two temperature datasets over 1145 African catchments to evaluate the dataset uncertainty contribution to the results of climate change studies. These deterministic datasets all cover a common 30-year period needed to define the reference period climate. The precipitation datasets include two gauge-only products (GPCC and CPC Unified), two satellite products (CHIRPS and PERSIANN-CDR) corrected using ground-based observations, four reanalysis products (JRA55, NCEP-CFSR, ERA-I and ERA5) and one merged gauged, satellite and reanalysis product (MSWEP). The temperature datasets include one gauged-only (CPC Unified) product and one reanalysis (ERA5) product. All combinations of these precipitation and temperature datasets were used to assess changes in future streamflows. To assess dataset uncertainty against that of other sources of uncertainty, the climate change impact study used a top-down hydroclimatic modeling chain using 10 CMIP5 (fifth Coupled Model Intercomparison Project) general circulation models (GCMs) under RCP8.5 and two lumped hydrological models (HMETS and GR4J) to generate future streamflows over the 2071–2100 period. Variance decomposition was performed to compare how much the different uncertainty sources contribute to actual uncertainty. Results show that all precipitation and temperature datasets provide good streamflow simulations over the reference period, but four precipitation datasets outperformed the others for most catchments. They are, in order, MSWEP, CHIRPS, PERSIANN and ERA5. For the present study, the two-member ensemble of temperature datasets provided negligible levels of uncertainty. However, the ensemble of nine precipitation datasets provided uncertainty that was equal to or larger than that related to GCMs for most of the streamflow metrics and over most of the catchments. A selection of the four best-performing reference datasets (credibility ensemble) significantly reduced the uncertainty attributed to precipitation for most metrics but still remained the main source of uncertainty for some streamflow metrics. The choice of a reference dataset can therefore be critical to climate change impact studies as apparently small differences between datasets over a common reference period can propagate to generate large amounts of uncertainty in future climate streamflows.
-
Climate anomalies, such as floods and droughts, as well as gradual temperature changes have been shown to adversely affect economies and societies. Although studies find that climate change might increase global inequality by widening disparities across countries, its effects on within-country income distribution have been little investigated, as has the role of rainfall anomalies. Here, we show that extreme levels of precipitation exacerbate within-country income inequality. The strength and direction of the effect depends on the agricultural intensity of an economy. In high-agricultural-intensity countries, climate anomalies that negatively impact the agricultural sector lower incomes at the bottom end of the distribution and generate greater income inequality. Our results indicate that a 1.5-SD increase in precipitation from average values has a 35-times-stronger impact on the bottom income shares for countries with high employment in agriculture compared to countries with low employment in the agricultural sector. Projections with modeled future precipitation and temperature reveal highly heterogeneous patterns on a global scale, with income inequality worsening in high-agricultural-intensity economies, particularly in Africa. Our findings suggest that rainfall anomalies and the degree of dependence on agriculture are crucial factors in assessing the negative impacts of climate change on the bottom of the income distribution.