Votre recherche
Résultats 6 ressources
-
The KnnCAD Version 4 weather generator algorithm for nonparametric, multisite simulations of temperature and precipitation data is presented. The K-nearest neighbor weather generator essentially reshuffles the historical data, with replacement. In KnnCAD Version 4, a block resampling scheme is introduced to preserve the temporal correlation structure in temperature data. Perturbation of the reshuffled variable data is also added to enhance the generation of extreme values. The Upper Thames River Basin in Ontario, Canada isused as a case study and the model is shown to simulate effectively the historical characteristics at the site. The KnnCAD Version 4 approach is shown to improve on the previous versions of the model and offers a major advantage over many parametric and semiparametric weather generators in that multisite use can be easily achieved without making statistical assumptions dealing with the spatial correlations and probability distributions of each variable.
-
Projections from the Canadian Regional Climate Model (CRCM) for the southern part of the province of Québec, Canada, suggest an increase in extreme precipitation events for the 2050 horizon (2041–2070). The main goal of this study consisted in a quantitative and qualitative assessment of the impact of the 20 % increase in rainfall intensity that led, in the summer of 2013, to overflows in the “Rolland-Therrien” combined sewer system in the city of Longueuil, Canada. The PCSWMM 2013 model was used to assess the sensitivity of this overflow under current (2013) and future (2050) climate conditions. The simulated quantitative variables (peak flow, QCSO, and volume discharged, VD) served as the basis for deriving ecotoxicological risk indices and event fluxes (EFs) transported to the St. Lawrence (SL) River. Results highlighted 15 to 500 % increases in VD and 13 to 148 % increases in QCSO by 2050 (compared to 2013), based on eight rainfall events measured from May to October. These results show that (i) the relationships between precipitation and combined sewer overflow variables are not linear and (ii) the design criteria for current hydraulic infrastructure must be revised to account for the impact of climate change (CC) arising from changes in precipitation regimes. EFs discharged into the SL River will be 2.24 times larger in the future than they are now (2013) due to large VDs resulting from CC. This will, in turn, lead to excessive inputs of total suspended solids (TSSs) and tracers for numerous urban pollutants (organic matter and nutrients, metals) into the receiving water body. Ecotoxicological risk indices will increase by more than 100 % by 2050 compared to 2013. Given that substantial VDs are at play, and although CC scenarios have many sources of uncertainty, strategies to adapt this drainage network to the effects of CC will have to be developed.
-
Although numerous studies have looked at the long-term trend of the temporal variability of winter temperature and precipitation in southern Quebec, no study has focused on the shifts in series means and the dependence between these two types of climate variables associated with this long-term trend. To fill these gaps, we used the Lombard method to detect the shifts in mean values and the copula method to detect any change in dependence between extreme (maximum and minimum) temperatures and precipitation (snow and rain) over the periods 1950–2000 (17 stations) and 1950–2010 (7 stations). During these two periods, the shifts in mean values of temperature and precipitation were recorded at less than half of the stations. The only significant change observed at the provincial scale is a decrease in the amount of snowfall, which occurred in many cases during the 1970s. This decrease affected stations on the north shore (continental temperate climate) more strongly than stations on the south shore (maritime temperate climate) of the St Lawrence River. However, this decrease in the amount of snowfall had no impact on the dependence over time between temperature and precipitation as snow.
-
In this study future flooding frequencies have been estimated for the Grand River catchment located in south - western Ontario, Canada. Historical and future climatic projections made by fifteen Coupled Model Inter - comparison Project - 3 climate models are bias - corrected and downscaled before they are used to obtain mid - and end of 21 st century streamflow projections. By comparing the future projected and historically observed precipitation and temperature record s it is found that the mean and extreme temperature events will intensify in future across the catchment. The increase is more drastic in the case of extreme events than the mean events. The sign of change in future precipitation is uncertain. Further flow extremes are expected to increase in magnitude and frequency in future across the catchment. The confidence in the projection is more for low return period (<10 years) extreme events than higher return period (10 - 100 years) events. It can be expected that increases in temperature will play a dominant role in increasing the magnitude of low return period flooding events while precipitation seems to play an important role in shaping the high return period events.
-
Global warming is expected to affect both the frequency and severity of extreme weather events, though projections of the response of these events to climate warming remain highly uncertain. The range of changes reported in the climate modelling literature is very large, sometimes leading to contradictory results for a given extreme weather event. Much of this uncertainty stems from the incomplete understanding of the physics of extreme weather processes, the lack of representation of mesoscale processes in coarse-resolution climate models, and the effect of natural climate variability at multi-decadal time scales. However, some of the spread in results originates simply from the variety of scenarios for future climate change used to drive climate model simulations, which hampers the ability to make generalizations about predicted changes in extreme weather events. In this study, we present a meta-analysis of the literature on projected future extreme weather events in order to quantify expected changes in weather extremes as a function of a common metric of global mean temperature increases. We find that many extreme weather events are likely to be significantly affected by global warming. In particular, our analysis indicates that the overall frequency of global tropical cyclones could decrease with global warming but that the intensity of these storms, as well as the frequency of the most intense cyclones could increase, particularly in the northwestern Pacific basin. We also found increases in the intensity of South Asian monsoonal rainfall, the frequency of global heavy precipitation events, the number of North American severe thunderstorm days, North American drought conditions, and European heatwaves, with rising global mean temperatures. In addition, the periodicity of the El Niño–Southern Oscillation may decrease, which could, in itself, influence extreme weather frequency in many areas of the climate system.
-
Abstract A disproportionate share of the global economic and human losses caused by environmental shocks is borne by people in the developing nations. The mountain region of Hindu-Kush Himalaya (HKH) in South Asia is threatened by numerous flooding events annually. An efficient disaster risk reduction often needs to rest upon location-based synoptic view of vulnerability. Resolving this deficit improves the ability to take risk reduction measures in a cost-effective way, and in doing so, strengthens the resilience of societies to flooding disasters. The central aim of this research is to identify the vulnerable locations across HKH boundary from the perspective of reported history of economic and human impacts due to occurrence of flooding disasters. A detailed analysis indicates a very high spatial heterogeneity in flooding disaster occurrence in the past 6 decades. The most recent decade reported highest number of disasters and greater spatial coverage as compared to the earlier decades. The data indicates that, in general, economic impacts of flooding disasters were notably higher in Pakistan, Afghanistan and Nepal. On the other hand, vulnerability scenarios with respect to human impacts were diverse for different countries. In terms of morbidity and mortality, Bangladesh, Pakistan, Bhutan and India were detected to be most susceptible to human impacts. Although Bhutan had seen lesser number of flooding disasters, higher population living within disaster prone region make them vulnerable. In summary, complex interactions between natural and socio-economic conditions play a dominant role to define and characterize the type and magnitude of vulnerability of HKH countries to disaster occurrence and their economic and human impacts.