Votre recherche
Résultats 42 ressources
-
Global warming has intensified the hydrological cycle, resulting in more frequent extreme precipitation events and altered spatiotemporal precipitation patterns in urban areas, thereby increasing the risk of urban flooding and threatening socio-economic and ecological security. This study investigates the characteristics of summer extreme precipitation in the Poyang Lake City Group (PLCG) from 1971 to 2022, utilizing the China Daily Precipitation Dataset and NCEP/NCAR reanalysis data. Nine extreme precipitation indices were examined through linear trend analysis, Mann–Kendall tests, wavelet transforms, and correlation methods to quantify trends, periodicity, and atmospheric drivers. The key findings include: (1) All indices exhibited increasing trends, with RX1Day and R95p exhibiting significant rises (p < 0.05). PRCPTOT, R20, and SDII also increased, indicating heightened precipitation intensity and frequency. (2) R50, RX1Day, and SDII demonstrated east-high-to-west-low spatial gradients, whereas PRCPTOT and R20 peaked in the eastern and western PLCG. More than over 88% of stations recorded rising trends in PRCPTOT and R95p. (3) Abrupt changes occurred during 1993–2009 for PRCPTOT, R50, and SDII. Wavelet analysis revealed dominant periodicities of 26–39 years, linked to atmospheric oscillations. (4) Strong subtropical highs, moisture convergence, and negative OLR anomalies were closely associated with extreme precipitation. Warmer SSTs in the eastern equatorial Pacific amplified precipitation in preceding seasons. This study provides a scientific basis for flood prevention and climate adaptation in the PLCG and highlighting the region’s vulnerability to monsoonal shifts under global warming. © 2025 by the authors.
-
The increasing threats of global flood risk mandate rapid and accurate high-resolution flood modeling strategies over large scales. In the United States, the National Oceanic and Atmospheric Administration (NOAA) Office of Water Prediction (OWP) has operationalised a Flood Inundation Mapping (FIM) framework utilising the Height Above Nearest Drainage (HAND)-Synthetic Rating Curve (SRC) approach. It translates streamflow into stage and subsequently maps the inundation over the floodplain. It is a low-fidelity FIM framework, suitable for large-scale applications with much less computational effort. The SRCs are calculated for each river segment using Manning's equation; however, uncertainty in Manning's parameters and missing bathymetry impart bias in SRC calculation, and thus in FIM. An SRC adjustment factor (λsrc), introduced by OWP, calibrates SRCs against USGS rating curves, HEC-RAS 1D rating curves, and National Weather Service (NWS)-Categorical Flood Inundation Mapping (CatFIM) locations. Adjusted SRCs improve the FIM predictions but are limited to locations with the above data sources. In this paper, we develop machine learning models to predict the λsrc over the entire United States river network. Results show that the eXtreme Gradient Boosting model yielded the strongest predictability, with an R2 of 0.70. The impact of λsrc on FIM predictions is evaluated for Hurricane Matthew in North Carolina and synthetic flood events in 15 watersheds. For Hurricane Matthew flooding, the mean percentage improvements in Critical Success Index (CSI), Probability of Detection (POD), and F1 Score are 17.5%, 20% and 12.5%, while for synthetic events, the improvements are 2.59%, 4.93%, and 3.03%, respectively. © 2025 The Author(s)
-
Floods constitute the most significant natural hazard to societies worldwide. Population growth and unchecked development have led to floodplain encroachment. Modelling suggests that climate change will regionally intensify the threat posed by future floods, with more people in harm's way. From a global change perspective, past flood events and their spatial-temporal patterns are of particular interest because they can be linked to former climate patterns, which can be used to guide future climate predictions. Millennial and centennial time series contain evidence of very rare extreme events, which are often considered by society as ‘unprecedented’. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regime, we can better forecast their future occurrence. This Virtual Special Issue (VSI) entitled Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events comprises 14 papers that focus on how centennial and millennia-scale natural and documentary flood archives help improve future flood science. Specifically, documentation of large and very rare flood episodes challenges society's lack of imagination regarding the scale of flood disasters that are possible (what we term here, the “unknown unknowns”). Temporal and spatial flood behaviour and related climate patterns as well as the reconstruction of flood propagation in river systems are important foci of this VSI. These reconstructions are crucial for the provision of robust and reliable data sets, knowledge and baseline information for future flood scenarios and forecasting. We argue that it remains difficult to establish analogies for understanding flood risk during the current period of global warming. Most studies in this VSI suggest that the most severe flooding occurred during relatively cool climate periods, such as the Little Ice Age. However, flood patterns have been significantly altered by land use and river management in many catchments and floodplains over the last two centuries, thereby obscuring the climate signal. When the largest floods in instrumental records are compared with paleoflood records reconstructed from natural and documentary archives, it becomes clear that precedent floods should have been considered in many cases of flood frequency analysis and flood risk modelling in hydraulic infrastructure. Finally, numerical geomorphological analysis and hydrological simulations show great potential for testing and improving our understanding of the processes and factors involved in the temporal and spatial behaviour of floods. © 2025 The Authors
-
Flooding is the most frequent natural disaster in the Yangtze River Basin (YRB), causing significant socio-economic damages. In recent decades, abundant wetland resources in the YRB have experienced substantial changes and played a significant role in strengthening the hydrological resilience to flood risks. However, wetland-related approaches remain underdeveloped for mitigating flood risks in the YRB due to the lack of considering long-term wetland effects in the flood risk assessment. Therefore, this study develops an wetland-related GIS-based spatial multi-index flood risk assessment model by incorporating the effects of wetland variations, to investigate the long-term implications of wetland variations on flood risks, to identify dominant flood risk indicators under wetland effects, and to provide wetland-related flood risk management suggestions. These findings indicate that wetlands in the Taihu Lake Basin, Wanjiang Plain, Poyang Lake Basin, and Dongting and Honghu Lake Basin could enhance flood control capacity and reduce flood risks in most years between 1985 and 2021 except years with extreme flood disasters. Wetlands in the Sichuan Basin have aggravated but limited impacts on flood risks. Precipitation in the Taihu Lake Basin and Poyang Lake Basin, runoff and vegetation cover in the Wanjiang Plain, GDP in the Taihu Lake Basin, population density in the Taihu lake Basin, Dongting and Honghu Lake Basin, and the Sichuan Basin are dominant flood risk indicators under wetland effects. Reasonably managing wetlands, maximizing stormwater storage capacity, increasing vegetation coverage in urbanized and precipitated regions are feasible suggestions for developing wetland-related flood resilience strategies in the YRB. © 2025 The Authors
-
Climate change has increased the frequency and intensity of extreme floods in the Lower Mekong River Basin (LMB). This study leverages the Long Short-Term Memory (LSTM) model to evaluate its performance in predicting river discharge across the LMB and to identify the key variables contributing to flood prediction through SHapley Additive exPlanation (SHAP) and Universal Multifractal (UM) analyses, in a scale-dependent and scale-independent manner, respectively. The performance of the LSTM model is satisfactory, with Nash–Sutcliffe Efficiency (NSE) values exceeding 0.9 for all subbasins when using all input features. The model tends to underestimate the largest peak flows in the midstream subbasins that experienced extreme rainfall events. According to SHAP, soil-related variables are important contributors to discharge prediction, with their impacts partially manifested through interactions with precipitation and runoff. Furthermore, the dominant contributing variables influencing flood prediction vary over time: soil-related variables and vegetation-related variables played a more significant role in earlier years, whereas hydrometeorological variables became more dominant after 2017. The UM analysis investigates the scaling behaviours of contributing variables, showing that hydrometeorological-related variables have a greater influence on predicting extreme discharge across the small temporal scales. Additionally, the UM analysis indicates that the model's performance improves as the temporal variability in extremes of the combined features decreases across 1 to 16 days. Overall, this study provides a comprehensive assessment of the LSTM model's performance in discharge prediction, emphasising the impact of the variability in the extremes of combined features through the scale-independent interpretation. These findings will offer valuable insights for stakeholders to improve flood risk management across the LMB. © 2025 The Authors
-
Extreme and compound events disrupt lake ecosystems worldwide, with their frequency, intensity and duration increasing in response to climate change. In this Review we outline evidence of the occurrence, drivers and impact of extreme and compound events in lakes. Univariate extremes, which include lake heatwaves, droughts and floods, underwater dimming episodes and hypoxia, can occur concurrently, sequentially or simultaneously at different locations to form multivariate, temporal or spatial compound events, respectively. The probability of extreme and compound events is increasing owing to climate warming, declining lake water levels in half of lakes globally, and basin-scale anthropogenic stressors, such as nutrient pollution. Most in-lake extreme events are inherently compound in nature owing to tightly coupled physical, chemical and biological underlying processes. The cascading effects of compound events propagate or dissipate through lakes. For example, a heatwave might trigger stratification and oxygen depletion, subsequently leading to fish mortality or the proliferation of harmful algal blooms. Interactions between extremes are increasingly observed and can trigger feedback loops that exacerbate harmful algal blooms and fishery declines, leading to severe ecological and socio-economic consequences. Managing the increasing risk of compound events requires integrated models, coordinated monitoring and proactive adaptation strategies tailored to the vulnerabilities of lake ecosystems. © Springer Nature Limited 2025.
-
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. © 2025 by the authors.
-
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study presents a novel approach that uses rainfall data from five dynamically and statistically downscaled (DD and SD) global climate models under two scenarios to visualize a potential future extent of flooding in ENC. Here, we use DD data (at 36-km grid spacing) to compute future changes in precipitation intensity–duration–frequency (PIDF) curves at the end of the 21st century. These PIDF curves are further applied to observed rainfall from Hurricane Matthew—a landfalling storm that created widespread flooding across ENC in 2016—to project versions of “Matthew 2100” that reflect changes in extreme precipitation under those scenarios. Each Matthew-2100 rainfall distribution was then used in hydrologic models (HEC-HMS and HEC-RAS) to simulate “2100” discharges and flooding extents in the Neuse River Basin (4686 km2) in ENC. The results show that DD datasets better represented historical changes in extreme rainfall than SD datasets. The projected changes in ENC rainfall (up to 112%) exceed values published for the U.S. but do not exceed historical values. The peak discharges for Matthew-2100 could increase by 23–69%, with 0.4–3 m increases in water surface elevation and 8–57% increases in flooded area. The projected increases in flooding would threaten people, ecosystems, agriculture, infrastructure, and the economy throughout ENC. © 2025 by the authors.
-
Extreme weather events (EWEs), including floods, droughts, heatwaves and storms, are increasingly recognised as major drivers of biodiversity loss and ecosystem degradation. In this systematic review, we synthesise 251 studies documenting the impacts of extreme weather events on freshwater, terrestrial and marine ecosystems, with the goal of informing effective conservation and management strategies for areas of special conservation or protection focus in Ireland.Twenty-two of the reviewed studies included Irish ecosystems. In freshwater systems, flooding (34 studies) was the most studied EWE, often linked to declines in species richness, abundance and ecosystem function. In terrestrial ecosystems, studies predominantly addressed droughts (60 studies) and extreme temperatures (48 studies), with impacts including increase in mortality, decline in growth and shift in species composition. Marine and coastal studies focused largely on storm events (33 studies), highlighting physical damages linked to wave actions, behavioural changes in macrofauna, changes in species composition and distribution, and loss in habitat cover. Results indicate that most EWEs lead to negative ecological responses, although responses are context specific.While positive responses to EWEs are rare, species with adaptive traits displayed some resilience, especially in ecosystems with high biodiversity or refuge areas.These findings underscore the need for conservation strategies that incorporate EWE projections, particularly for protected habitats and species. © 2025 Royal Irish Academy. All rights reserved.
-
Les événements météorologiques extrêmes (EME) et les désastres qu’ils entrainent provoquent des conséquences psychosociales qui sont modulées en fonction de différents facteurs sociaux. On constate aussi que les récits médiatiques et culturels qui circulent au sujet des EME ne sont pas représentatifs de l’ensemble des expériences de personnes sinistrées : celles qui en subissent les conséquences les plus sévères tendent aussi à être celles qu’on « entend » le moins dans l’espace public. Ces personnes sont ainsi susceptibles de vivre de l’injustice épistémique, ce qui a des effets délétères sur le soutien qu’elles reçoivent. Face à ces constats s’impose la nécessité de mieux comprendre la diversité des expériences d’EME et d’explorer des stratégies pour soutenir l’ensemble des personnes sinistrées dans leur rétablissement psychosocial. Cet article soutient que la recherche narrative peut contribuer à répondre à ces objectifs. En dépeignant des réalités multiples, la recherche narrative centrée sur les récits de personnes sinistrées présente aussi un intérêt significatif pour l’amélioration des pratiques d’intervention en contexte de désastre. , Extreme weather events (EWE) and their resulting disasters cause psychosocial consequences that are moderated by different social factors. Media and cultural accounts of EWEs do not represent the full range of disaster survivor experiences, that is, those who experienced the most severe consequences also tend to be those least “heard” in the public arena. These people are therefore most likely to experience forms of epistemic injustice that negatively impact the support offered to cope with disaster. Considering these findings, there is a need to better understand the diversity of EWE experiences and explore strategies for supporting all disaster survivors in their psychosocial recovery. This article argues that narrative research can help meet these needs. By portraying the multiple realities of people affected by EWEs, narrative research focusing on the stories of disaster survivors is also of significant interest for improving intervention practices in this context.
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
-
Geohazards associated with the dynamics of the liquid and solid water of the Earth’s hydrosphere, such as floods and glacial processes, may pose significant risks to populations, activities and properties [...]
-
Résumé L'hydrogéomorphologie étudie la dynamique des rivières en se concentrant sur les interactions liant la structure des écoulements, la mobilisation et le transport des sédiments et les morphologies qui caractérisent les cours d'eau et leur bassin‐versant. Elle offre un cadre d'analyse et des outils pour une meilleure intégration des connaissances sur la dynamique des rivières pour la gestion des cours d'eau au sens large, et plus spécifiquement, pour leur restauration, leur aménagement et pour l'évaluation et la prévention des risques liés aux aléas fluviaux. Au Québec, l'hydrogéomorphologie émerge comme contribution significative dans les approches de gestion et d'évaluation du risque et se trouve au cœur d'un changement de paradigme dans la gestion des cours d'eau par lequel la restauration des processus vise à augmenter la résilience des systèmes et des sociétés et à améliorer la qualité des environnements fluviaux. Cette contribution expose la trajectoire de l'hydrogéomorphologie au Québec à partir des publications scientifiques de géographes du Québec et discute des visées de la discipline en recherche et en intégration des connaissances pour la gestion des cours d'eau . , Abstract Hydrogeomorphology studies river dynamics, focusing on the interactions between flow structure, sediment transport, and the morphologies that characterize rivers and their watersheds. It provides an analytical framework and tools for better integrating knowledge of river dynamics into river management in the broadest sense, and more specifically, into river restoration as well as into the assessment and prevention of risks associated with fluvial hazards. In Quebec, hydrogeomorphology is emerging as a significant contribution to risk assessment and management approaches, and is at the heart of a paradigm shift in river management whereby process restoration aims to increase the resilience of fluvial systems and societies, and improve the quality of fluvial environments. This contribution outlines the trajectory of hydrogeomorphology in Quebec, based on scientific publications by Quebec geographers, and discusses the discipline's aims in research and knowledge integration for river management . , Messages clés Les géographes du Québec ont contribué fortement au développement des connaissances et outils de l'hydrogéomorphologie. L'hydrogéomorphologie a évolué d'une science fondamentale à une science où les connaissances fondamentales sont au service de la gestion des cours d'eau. L'hydrogéomorphologie et le cortège de connaissances et d'outils qu'elle promeut font de cette discipline une partenaire clé pour une gestion holistique des cours d'eau.
-
Abstract This study investigates possible trends and teleconnections in temperature extremes in New South Wales (NSW), Australia. Daily maximum and minimum temperature data covering the period 1971–2021 at 26 stations located in NSW were used. Three indices, which focus on daily maximum temperature, daily minimum temperature, and average daily temperature in terms of Excessive Heat Factor (EHF) were investigated to identify the occurrence of heatwaves (HWs). The study considered HWs of different durations (1-, 5-, and 10-days) in relation to intensity, frequency, duration, and their first occurrence parameters. Finally, the influences of three global climate drivers, namely – the El Niño/Southern Oscillation (ENSO), the Southern Annular Mode (SAM), and the Indian Ocean Dipole (IOD) were investigated with associated heatwave attributes for extended Austral summers. In this study, an increasing trend in both hot days and nights was observed for most of the selected stations within the study area. The increase was more pronounced for the last decade (2011–2021) of the investigated time period. The number, duration and frequency of the heatwaves increased over time considering the EHF criterion, whereas no particular trend was detected in cases of TX90 and TN90. It was also evident that the first occurrence of all the HWs shifted towards the onset of the extended summer while considering the EHF criterion of HWs. The correlations between heatwave attributes and climate drivers depicted that heatwave over NSW was positively influenced by both the IOD and ENSO and negatively correlated with SAM. The findings of this study will be useful in formulating strategies for managing the impacts of extreme temperature events such as bushfires, floods, droughts to the most at-risk regions within NSW.
-
In response to extreme flood events and an increasing awareness that traditional flood control measures alone are inadequate to deal with growing flood risks, spatial flood risk management strategies have been introduced. These strategies do not only aim to reduce the probability and consequences of floods, they also aim to improve local and regional spatial qualities. To date, however, research has been largely ignorant as to how spatial quality, as part of spatial flood risk management strategies, can be successfully achieved in practice. Therefore, this research aims to illuminate how spatial quality is achieved in planning practice. This is done by evaluating the configurations of policy instruments that have been applied in the Dutch Room for the River policy program to successfully achieve spatial quality. This policy program is well known for its dual objective of accommodating higher flood levels as well as improving the spatial quality of the riverine areas. Based on a qualitative comparative analysis, we identified three successful configurations of policy instruments. These constitute three distinct management strategies: the “program‐as‐guardian”, the “project‐as‐driver,” and “going all‐in” strategies. These strategies provide important leads in furthering the development and implementation of spatial flood risk management, both in the Netherlands and abroad.
-
Abstract Ice is present during a part of the year on many rivers of cold, and even temperate, regions of the globe. Though largely ignored in hydrological literature, river ice has serious hydrologic impacts, including extreme flood events caused by ice jams, interference with transportation and energy production, low winter flows and associated ecological and water quality consequences. It is also a major factor in the life cycle of many aquatic and other species, being both beneficial and destructive, depending on location and time of year. A brief review of the hydrologic aspects of river ice shows strong climatic links and illustrates the sensitivity of the entire ice regime to changes in climatic conditions. To date, this sensitivity has only partly been documented: the vast majority of related studies have focused on the timing of freeze‐up and break‐up over the past century, and indicate trends that are consistent with concomitant changes in air temperature. It is only in the past few years that attention has been paid to the more complex, and practically more important, question of what climatic change may do to the frequency and severity of extreme ice jams, floods and low flows. The probable changes to the ice regime of rivers, and associated hydrological processes and impacts, are discussed in the light of current understanding. Copyright © 2002 John Wiley & Sons, Ltd.
-
L’estimation du débit en rivières est un paramètre clé pour la gestion des ressources hydriques, la prévention des risques liés aux inondations et la planification des équipements hydroélectriques. Lorsque le débit d’eau est très élevé lors d'évènements extrêmes, les méthodes de jaugeage traditionnelles ne peuvent pas être utilisées. De plus, les stations du réseau hydrométrique sont généralement éparses et leur répartition spatiale n’est pas optimale. Par conséquent, de nombreuses sections de rivières ne peuvent être suivies par des mesures et observations du débit. Pour ces raisons, pendant la dernière décennie, les capteurs satellitaires ont été considérés comme une source d’observation complémentaire aux observations traditionnelles du niveau d’eau et du débit en rivières. L’utilisation d’une telle approche a fourni un moyen de maintenir et d’étendre le réseau d'observation hydrométrique. L’approche avec télédétection permet d’estimer le débit à partir des courbes de tarage qui met en relation le débit instantané (Q) et la géométrie d’une section transversale du chenal (la largeur ou la profondeur effective de la surface d’eau). En revanche, cette méthode est associée à des limitations, notamment, sa dépendance aux courbes de tarage. En effet, en raison de leurs natures empiriques, les courbes de tarage sont limitées à des sections spécifiques et ne peuvent être appliquées dans d’autres rivières. Récemment, des techniques d’apprentissage profond ont été appliquées avec succès dans de nombreux domaines, y compris en hydrologie. Dans le présent travail, l’approche d’apprentissage profond a été choisie, en particulier les réseaux de neurones convolutifs (CNN), pour estimer le débit en rivière. L’objectif principal de ce travail est de développer une approche d’estimation du débit en rivières à partir de l’imagerie RADARSAT 1&2 à l’aide de l’apprentissage profond. La zone d’étude se trouve dans l’ecozone du bouclier boréal à l’Est du Canada. Au total, 39 sites hydrographiques ont fait l’objet de cette étude. Dans le présent travail, une nouvelle architecture de CNN a été a été proposée, elle s'adapte aux données utilisées et permet d’estimer le débit en rivière instantané. Ce modèle donne un résultat du coefficient de détermination (R²) et de Nash-Sutcliffe égale à 0.91, le résultat d’erreur quadratique moyenne égale à 33 m³ /s. Cela démontre que le modèle CNN donne une solution appropriée aux problèmes d’estimation du débit avec des capteurs satellites sans intervention humaine. <br /><br />Estimating river flow is a key parameter for effective water resources management, flood risk prevention and hydroelectric facilities planning. In cases of very high flow of water or extreme events, traditional gauging methods cannot be reliable. In addition, hydrometric network stations are often sparse and their spatial distribution is not optimal. Therefore, many river sections cannot be monitored using traditional flow measurements and observations. For these reasons, satellite sensors are considered as a complementary observation source to traditional water level and flow observations in the last decades. The use of this kind of approach has provided a way to maintain and expand the hydrometric observation network. Remote sensing data can be used to estimate flow from rating curves that relate the instantaneous flow (Q) to the geometry of a channel cross-section (the effective width or depth of the water surface). On the other hand, remote sensing is also associated with limitations, notably its dependence on the rating curves. Indeed, due to their empirical nature, rating curves are limited to specific sections and cannot be applied in other rivers. Recently, deep learning techniques have been successfully applied in many fields, including hydrology. In the present work, the deep learning approach has been chosen, in particular convolutional neural networks (CNN), to estimate river flow. The main objective of this work is to develop an approach to estimate river flow from RADARSAT 1&2 imagery using deep learning. In this study, 39 hydrographic sites of the Boreal Shield ecozone in Eastern Canada were considered. A new CNN architecture was developed to provide a straightforward estimation of the instantaneous river flow rate. The achieved results demonstrated a coefficient of determination (R²) and Nash-Sutcliffe values of 0.91, and a root mean square error of 33m³ /s. This indicates the effectiveness of CNN in automatic flow estimation with satellite sensors.
-
La température extrême de l’eau influence de nombreuses propriétés physiques, chimiques et biologiques des rivières. l ’ évaluation de l ’ Une prédiction précise de la température de l’eau est importante pour impact environnemental. Dans ce cadre, différents modèles ont été utilisés pour estimer les températures de l ’ linéaires simp eau à différentes échelles spatiales et temporelles, allant des méthodes les pour déterminer l’incertitude à des modèles sophistiqués non linéaires. Cependant, cette variable primordiale n’a pas été traitée dans un contexte probabiliste (ou fréquentiste). Donc, l’estimation des évènements extrêmes thermiques à l’aide des approc hes d’analyse fréquentielle locale (AFL) est importante. Lors de l’estimation des extrêmes thermiques, il est crucial de tenir compte de la forme de la distribution de fréquences considérée. Dans la première partie de la thèse , nous nous concentrons sur la sélection de la distribution de probabilité la plus appropriée des températures des rivières. Le critère d critère d ’ ’ information d ’ Akaike (AIC) et le information bayésien (BIC) sont utilisés pour évaluer la qualité de l distributions statis ’ ajustement des tiques. La validation des distributions candidates appropriées est également effectuée en utilisant l ’ approche de diagramme de rapport des L obtenus montrent que la distribution de Weibull (W2) moments (MRD). Les résultats est celle qui semble s’ajuster le données provenant des stations de haute altitude, tandis que les mieux aux séries d’extrêmes provenant des stations situées dans les régions de basse altitude sont bien adaptées avec la distribution normale (N). Ceci correspond au premier article. L a ’ couverture spatiale des données de température des cours d ’ eau est limitée dans de nombreuses régions du monde. Pour cette raison, une analyse fréquentielle régionale (AFR) permettant d estimer les extrêmes de température des rivières sur des sites non jau gés ou mal surveillés est nécessaire. En général, l’AFR inclut deux étapes principales, la délimitation des régions homogènes (DRH) qui vise à déterminer les sites similaires, et l’estimation régionale (ER) qui transfère l’information depuis les sites déte rminés dans la première étape vers le site cible. Par conséquent, le modèle d’indice thermique (IT) est introduit dans le contexte d’AFR pour estimer les extrêmes du régime thermique. Cette méthode est analogue au modèle d ’ indice de crue (IF) largement uti lisé en hydrologie. Le modèle IT incorpore l’homogénéité de la distribution de fréquence appropriée pour chaque région, ce qui offre une plus grande flexibilité. Dans cette étude, le modèle IT est comparé avec la régression linéaire multiple (MLR). Les rés ultats indiquent que le modèle IT fournit la meilleure performance (Article 2) . Ensuite, l’approche d’analyse canonique des corrélations non linéaires (ACCNL) est intégrée dans la DRH, présentée dans le Chapitre 4 de ce manuscrit (Article 3). Elle permet de considérer la complexité des phénomènes thermiques dans l’étape de DRH. Par la suite, dans le but d’identifier des combinaisons (DRH-ER) plus prometteuses permettant une meilleure estimation, une étude comparative est réalisée. Les combinaisons considérées au niveau des deux étapes de la procédure de l’AFR sont des combinaisons linéaires, semi-linéaires et non linéaires. Les résultats montrent que la meilleure performance globale est présentée par la combinaison non linéaire ACCNL et le modèle additif généralisé (GAM). Finalement, des modèles non paramétriques tels que le foret aléatoire (RF), le boosting de gradient extrême (XGBoost) et le modèle régression multivariée par spline adaptative (MARS) sont introduits dans le contexte de l’AFR pour estimer les quantiles thermiques et les comparer aux quantiles estimés à l’aide du modèle semi-paramétrique GAM. Ces modèles sont combinés avec des approches linéaires et non linéaires dans l’étape DRH, telles que ACC et ACCNL, afin de déterminer leur potentiel prédictif. Les résultats indiquent que ACCNL+GAM est la meilleure, suivie par ACC+MARS. Ceci correspond à l’article 4. <br /><br />Extreme water temperatures have a significant impact on the physical, chemical, and biological properties of the rivers. Environmental impact assessment requires accurate predictions of water temperature. The models used to estimate water temperatures within this framework range from simple linear methods to more complex nonlinear models. However, w ater temperature has not been studied in a probabilistic manner. It is, therefore, essential to estimate extreme thermal events using local frequency analysis (LFA). An LFA aims to predict the frequency and amplitude of these events at a given gauged locat ion. In order to estimate quantiles, it is essential to consider the shape of the frequency distribution being considered. The first part of our study focuses on selecting the most appropriate probability distribution for river water temperatures. The Akai ke information criteria (AIC) and the Bayesian information criteria (BIC) are used to evaluate the goodness of fit of statistical distributions. An Lmoment ratio diagram (MRD) approach is also used to validate sui table candidate distributions. The results good fit for extremes data from the highindicate that the Weibull distribution (W2) provides a altitude stations, while the normal distribution (N) is most appropriate for lowaltitude stations. This corresponds to the first article. In many parts of the world, river temperature data are limited in terms of spatial coverage and size of the series. Therefore, it is necessary to perform a regional frequency analysis (RFA) to estimate river temperature extremes at ungauged or poorly monitored sites. Generall y, RFA involves two main steps: delineation of homogenous regions (DHR), which identifies similar sites, and regional estimation (RE), which transfers information from the identified sites to the target site. The thermal index (TI) model is introduced in t he context of RFA to estimate the extremes of the thermal regime. This method is analogous to the index flood (IF) model commonly used in hydrology. The TI model considers the homogeneity of the appropriate frequency distributions for each region, which pr ovides larger flexibility. This study compares the TI model with multiple linear regression (MLR) approach. Results indicate that the TI model leads to better performances (Article 2). Then, the nonlinear canonical correlations analysis (NLCCA) approach is integrated into the DHR, as presented in Chapter 4 of this manuscript (Article 3). It allows considering the complexity of the thermal phenomena in the DHR step. A comparative study is then conducted to identify more promising combinations (DHR RE), that RFA procedure, linear, semilead to best estimation results. In the two stages of the linear, and nonlinear combinations are considered. The results of this study indicate that the nonlinear combination of the NLCCA and the generalized additive model (GAM ) produces the best overall performances. Finally, nonparametric models such as random forest (RF), extreme gradient boosting (XGBoost), and multivariate adaptive regression splines (MARS) are introduced in the context of RFA in order to estimate thermal q uantiles and compare them to quantiles estimated using the semiparametric GAM model. The predictive potential of these models is determined by combining them with linear and nonlinear approaches, such as CCA and NLCCA, in the DHR step. The results indicat e that NLCCA+GAM is the best, followed by CCA+MARS. This corresponds to article 4.