UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Enjeux majeurs
  • Inégalités et événements extrêmes
Types d'événements extrêmes
  • Évènements liés au froid (neige, glace)

Résultats 113 ressources

Recently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Page 1 de 6
Résumés
  • Zhang, J., Chu, C., & Wang, P. (2025). Research on Extreme Precipitation Risk Considering Physical-social-environmental Attributes. Journal of Disaster Prevention and Mitigation Engineering, 45(4), 736–744. https://doi.org/10.13409/j.cnki.jdpme.20241220001

    This study aims to conduct a grid-scale extreme precipitation risk assessment in Xuanwu District, Nanjing, so as to fill the gaps in existing indicator systems and improve the precision of risk characterization. By integrating physical, social, and environmental indicators, a risk assessment framework was constructed to comprehensively represent the characteristics of extreme precipitation risk. This study applied the entropy weight method to calculate indicator weights, combined with ArcGIS technology and the K-means clustering algorithm, to analyze the spatial distribution characteristics of risk under a 100-year extreme precipitation scenario and to identify key influencing indicators across different risk levels. The results showed that extreme precipitation risk levels in Xuanwu District exhibited significant spatial heterogeneity, with an overall distribution pattern of low risk in the central area and high risk in the surrounding areas. The influence mechanisms of key indicators showed tiered response characteristics: the low-risk areas were mainly controlled by the submerged areas of urban and rural, industrial and mining, and residential lands, water body area, soil erosion level, and normalized difference vegetation index (NDVI). The medium-risk areas were influenced by the submerged areas of urban and rural, industrial and mining, residential lands, the submerged areas of forest land, emergency service response time to disaster-affected areas, soil erosion level, and NDVI. The high-risk areas were jointly dominated by the submerged areas of urban and rural, industrial and mining, residential lands, the submerged areas of forest land, and NDVI. The extremely high-risk areas were driven by three factors—the submerged areas of forest land, emergency service response time to disaster-affected areas, and the proportion of the largest patch to the landscape area. This study improves the indicator system for extreme precipitation risk assessment and clarifies the tiered response patterns of risk-driving indicators, providing a scientific basis for developing differentiated flood control strategies in Xuanwu District while offering important theoretical support for improving regional flood disaster resilience. © 2025 Editorial Office of Journal of Disaster Prevention and Mitigation Engineering. All rights reserved.

  • Liu, H., Zhang, Z., & Liu, B. (2025). Spatial–Temporal Characteristics and Drivers of Summer Extreme Precipitation in the Poyang Lake City Group (PLCG) from 1971 to 2022. Remote Sensing, 17(16). https://doi.org/10.3390/rs17162915

    Global warming has intensified the hydrological cycle, resulting in more frequent extreme precipitation events and altered spatiotemporal precipitation patterns in urban areas, thereby increasing the risk of urban flooding and threatening socio-economic and ecological security. This study investigates the characteristics of summer extreme precipitation in the Poyang Lake City Group (PLCG) from 1971 to 2022, utilizing the China Daily Precipitation Dataset and NCEP/NCAR reanalysis data. Nine extreme precipitation indices were examined through linear trend analysis, Mann–Kendall tests, wavelet transforms, and correlation methods to quantify trends, periodicity, and atmospheric drivers. The key findings include: (1) All indices exhibited increasing trends, with RX1Day and R95p exhibiting significant rises (p < 0.05). PRCPTOT, R20, and SDII also increased, indicating heightened precipitation intensity and frequency. (2) R50, RX1Day, and SDII demonstrated east-high-to-west-low spatial gradients, whereas PRCPTOT and R20 peaked in the eastern and western PLCG. More than over 88% of stations recorded rising trends in PRCPTOT and R95p. (3) Abrupt changes occurred during 1993–2009 for PRCPTOT, R50, and SDII. Wavelet analysis revealed dominant periodicities of 26–39 years, linked to atmospheric oscillations. (4) Strong subtropical highs, moisture convergence, and negative OLR anomalies were closely associated with extreme precipitation. Warmer SSTs in the eastern equatorial Pacific amplified precipitation in preceding seasons. This study provides a scientific basis for flood prevention and climate adaptation in the PLCG and highlighting the region’s vulnerability to monsoonal shifts under global warming. © 2025 by the authors.

  • Monckeberg, E., & Gómez, S. (2025). Exploring the potential of coastal cities to address climate change towards an inclusive, equitable and politically engaged orientation. Anthropocene Coasts, 8(1). https://doi.org/10.1007/s44218-025-00099-5

    In the context of the global climate crisis, the analysis and strengthening of adaptive capacities in coastal urban environments has become imperative. Nearly 40% of the global population lives within 100 km of the coastline, making them critical research hotspots due to their particular vulnerability. This qualitative literature review takes a transdisciplinary approach and prioritizes research that addresses specific challenges and solutions for these vulnerable environments, with an emphasis on resilience to phenomena such as sea level rise, flooding and extreme weather events. The review analyzes articles that offer a holistic view, encompassing green and blue infrastructures, community needs and governance dynamics. It highlights studies that propose innovative strategies to foster citizen participation and explicitly address aspects such as climate justice. By synthesizing interdisciplinary perspectives and local knowledge, this review aims to provide a comprehensive framework for climate adaptation in coastal urban areas. The findings have the potential to inform public policy and urban planning practices. © The Author(s) 2025.

  • Lee, T., & Ouarda, T. B. M. J. (2025). Climate teleconnection-driven stochastic simulation for future water-related risk management. Journal of Hydrology, 662, 133834. https://doi.org/10.1016/j.jhydrol.2025.133834

    Water risk management has been adversely affected by climate variations, including recent climate change. Climate variations have highly impacted the hydrological cycles in the atmosphere and biosphere, and their impact can be defined with the teleconnection between climate signals and hydrological variables. Water managers should practice future risk management to mitigate risks, including the impact of teleconnection, and stochastically simulated scenarios can be employed as an effective tool to take advantage of water management preparation. A stochastic simulation model for hydrological variables teleconnected with climate signals is very useful for water managers. Therefore, the objective of the current study was to develop a novel stochastic simulation model for the simulation of synthetic series teleconnected with climate signals. By jointly decomposing the hydrological variables and a climate signal with bivariate empirical mode decomposition (BEMD), the bivariate nonstationary oscillation resampling (B-NSOR) model was applied to the significant components. The remaining components were simulated with the newly developed method of climate signal-led K-nearest neighbor-based local linear regression (CKLR). This entire approach is referred to as the climate signal-led hydrologic stochastic simulation (CSHS) model. The key statistics were estimated from the 200 simulated series and compared with the observed data, and the results showed that the CSHS model could reproduce the key statistics including extremes while the SML model showed slight underestimation in the skewness and maximum values. Additionally, the observed long-term variability of hydrological variables was reproduced well with the CSHS model by analyzing drought statistics. Moreover, the Hurst coefficient with slightly higher than 0.8 was fairly preserved by the CSHS model while the SML model is underestimated as 0.75. The overall results demonstrate that the proposed CSHS model outperformed the existing shifting mean level (SML) model, which has been used to simulate hydroclimatological variables. Future projections until 2100 were obtained with the CSHS model. The overall results indicated that the proposed CSHS model could represent a reasonable alternative to teleconnect climate signals with hydrological variables.

    Consulter sur www.sciencedirect.com
  • Zhekov, A., Bourgeois, B., & Poulin, M. (2025). Flooding stress influences productivity and modulates biodiversity effects in experimental grassland communities, shaping biodiversity–productivity relationships. American Journal of Botany, 112(7), e70063. https://doi.org/10.1002/ajb2.70063

    Abstract Premise Biodiversity loss and increasing extreme weather events disrupt the functioning of ecosystems and thus their ability to provide services. While the interplay among various climatic constraints, diversity and productivity has received increasing attention in the last decades, the role of flooding has been overlooked. Methods In a greenhouse experiment, we manipulated species richness and water regimes to evaluate the influence of flooding on species diversity–productivity relationships. We measured biomass production and partitioned net biodiversity effects into complementarity and selection effects. To link changes in biodiversity effects to underlying mechanisms, we evaluated the contribution of species richness, species identity, functional diversity and community‐level traits. Results Under flooding, biomass production decreased, and biodiversity effects were less frequently positive. By reducing the incidence of positive complementarity effects, flooding promoted a preponderance of selection effects. Flooding further favored competitive displacement by Phalaris arundinacea ; balanced contributions to selection effects from all functional groups at field capacity subsided under flooding when P. arundinacea became the single dominant species. As a result, its acquisitive leaf trait attributes contributed more to selection effects and biomass production under flooding, while root traits contributed less to complementarity effects at field capacity. Conclusions As an environmental stressor, flooding promoted the dominance of tolerant species and reduced the incidence of complementary species interactions in the experimental plant communities, clearly modulating the linkage between diversity and productivity.

    Consulter sur bsapubs.onlinelibrary.wiley.com
  • Baruah, A., Spies, R., Devi, D., Cohen, S., Aristizabal, F., Nikrou, P., Tian, D., & Pruitt, C. (2025). Predicting synthetic rating curve adjustment factors with explainable machine learning for enhancing the United States operational flood inundation mapping framework. Journal of Hydrology, 662. https://doi.org/10.1016/j.jhydrol.2025.134086

    The increasing threats of global flood risk mandate rapid and accurate high-resolution flood modeling strategies over large scales. In the United States, the National Oceanic and Atmospheric Administration (NOAA) Office of Water Prediction (OWP) has operationalised a Flood Inundation Mapping (FIM) framework utilising the Height Above Nearest Drainage (HAND)-Synthetic Rating Curve (SRC) approach. It translates streamflow into stage and subsequently maps the inundation over the floodplain. It is a low-fidelity FIM framework, suitable for large-scale applications with much less computational effort. The SRCs are calculated for each river segment using Manning's equation; however, uncertainty in Manning's parameters and missing bathymetry impart bias in SRC calculation, and thus in FIM. An SRC adjustment factor (λsrc), introduced by OWP, calibrates SRCs against USGS rating curves, HEC-RAS 1D rating curves, and National Weather Service (NWS)-Categorical Flood Inundation Mapping (CatFIM) locations. Adjusted SRCs improve the FIM predictions but are limited to locations with the above data sources. In this paper, we develop machine learning models to predict the λsrc over the entire United States river network. Results show that the eXtreme Gradient Boosting model yielded the strongest predictability, with an R2 of 0.70. The impact of λsrc on FIM predictions is evaluated for Hurricane Matthew in North Carolina and synthetic flood events in 15 watersheds. For Hurricane Matthew flooding, the mean percentage improvements in Critical Success Index (CSI), Probability of Detection (POD), and F1 Score are 17.5%, 20% and 12.5%, while for synthetic events, the improvements are 2.59%, 4.93%, and 3.03%, respectively. © 2025 The Author(s)

  • Schulte, L., Santisteban, J. I., Fuller, I. C., & Ballesteros-Cánovas, J. A. (2025). Editorial preface to special issue: Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events. Global and Planetary Change, 254. https://doi.org/10.1016/j.gloplacha.2025.105021

    Floods constitute the most significant natural hazard to societies worldwide. Population growth and unchecked development have led to floodplain encroachment. Modelling suggests that climate change will regionally intensify the threat posed by future floods, with more people in harm's way. From a global change perspective, past flood events and their spatial-temporal patterns are of particular interest because they can be linked to former climate patterns, which can be used to guide future climate predictions. Millennial and centennial time series contain evidence of very rare extreme events, which are often considered by society as ‘unprecedented’. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regime, we can better forecast their future occurrence. This Virtual Special Issue (VSI) entitled Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events comprises 14 papers that focus on how centennial and millennia-scale natural and documentary flood archives help improve future flood science. Specifically, documentation of large and very rare flood episodes challenges society's lack of imagination regarding the scale of flood disasters that are possible (what we term here, the “unknown unknowns”). Temporal and spatial flood behaviour and related climate patterns as well as the reconstruction of flood propagation in river systems are important foci of this VSI. These reconstructions are crucial for the provision of robust and reliable data sets, knowledge and baseline information for future flood scenarios and forecasting. We argue that it remains difficult to establish analogies for understanding flood risk during the current period of global warming. Most studies in this VSI suggest that the most severe flooding occurred during relatively cool climate periods, such as the Little Ice Age. However, flood patterns have been significantly altered by land use and river management in many catchments and floodplains over the last two centuries, thereby obscuring the climate signal. When the largest floods in instrumental records are compared with paleoflood records reconstructed from natural and documentary archives, it becomes clear that precedent floods should have been considered in many cases of flood frequency analysis and flood risk modelling in hydraulic infrastructure. Finally, numerical geomorphological analysis and hydrological simulations show great potential for testing and improving our understanding of the processes and factors involved in the temporal and spatial behaviour of floods. © 2025 The Authors

  • Kumar, G. P., & Dwarakish, G. S. (2025). Machine learning-based ensemble of Global climate models and trend analysis for projecting extreme precipitation indices under future climate scenarios. Environmental Monitoring and Assessment, 197(9). https://doi.org/10.1007/s10661-025-14469-6

    Monitoring changes in climatic extremes is vital, as they influence current and future climate while significantly impacting ecosystems and society. This study examines trends in extreme precipitation indices over an Indian tropical river basin, analyzing and ranking 28 Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Models (GCMs) based on their performance against India Meteorological Department (IMD) data. The top five performing GCMs were selected to construct multi-model ensembles (MMEs) using Machine Learning (ML) algorithms, Random Forest (RF), Support Vector Machine (SVM), Multiple Linear Regression (MLR), and the Arithmetic Mean. Statistical metrics reveal that the application of an RF model for ensembling performs better than other models. The analysis focused on six IMD-convention indices and eight indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). Future projections were examined for three timeframes: near future (2025–2050), mid-future (2051–2075), and far future (2076–2100) for SSP245 and SSP585 scenarios. Statistical trend analysis, the Mann-Kendall test, Sen’s Slope estimator, and Innovative Trend Analysis (ITA), were applied to the MME to assess variability and detect changes in extreme precipitation trends. Compared to SSP245, in the SSP585 scenario, Total Precipitation (PRCPTOT) shows a significant decreasing trend in the near future, mid-future, and far future and Moderate Rain (MR) shows a decreasing trend in the near future and far future of monsoon season. The findings reveal significant future trends in extreme precipitation, impacting Sustainable Development Goals (SDGs) achievement and providing crucial insights for sustainable water resource management and policy planning in the Kali River basin. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.

  • Adeyeri, O. E. (2025). Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways. Water, 17(15), 2247. https://doi.org/10.3390/w17152247

    African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 °C/decade), leading to more intense hydrological extremes and regionally varied responses. For example, East Africa has shown reversed temperature–moisture correlations since the Holocene onset, while West African rivers demonstrate nonlinear runoff sensitivity (a threefold reduction per unit decline in rainfall). Land-use and land-cover changes (LULCC) are as impactful as climate change, with analysis from 1959–2014 revealing extensive conversion of primary non-forest land and a more than sixfold increase in the intensity of pastureland expansion by the early 21st century. Future projections, exemplified by studies in basins like Ethiopia’s Gilgel Gibe and Ghana’s Vea, indicate escalating aridity with significant reductions in surface runoff and groundwater recharge, increasing aquifer stress. These findings underscore the need for integrated adaptation strategies that leverage remote sensing, nature-based solutions, and transboundary governance to build resilient water futures across Africa’s diverse basins.

    Consulter sur www.mdpi.com
  • Santos, E. (2025). Nature-Based Solutions for Water Management in Europe: What Works, What Does Not, and What’s Next? Water, 17(15), 2193. https://doi.org/10.3390/w17152193

    Nature-based solutions (NbS) are increasingly recognized as strategic alternatives and complements to grey infrastructure for addressing water-related challenges in the context of climate change, urbanization, and biodiversity decline. This article presents a critical, theory-informed review of the state of NbS implementation in European water management, drawing on a structured synthesis of empirical evidence from regional case studies and policy frameworks. The analysis found that while NbS are effective in reducing surface runoff, mitigating floods, and improving water quality under low- to moderate-intensity events, their performance remains uncertain under extreme climate scenarios. Key gaps identified include the lack of long-term monitoring data, limited assessment of NbS under future climate conditions, and weak integration into mainstream planning and financing systems. Existing evaluation frameworks are critiqued for treating NbS as static interventions, overlooking their ecological dynamics and temporal variability. In response, a dynamic, climate-resilient assessment model is proposed—grounded in systems thinking, backcasting, and participatory scenario planning—to evaluate NbS adaptively. Emerging innovations, such as hybrid green–grey infrastructure, adaptive governance models, and novel financing mechanisms, are highlighted as key enablers for scaling NbS. The article contributes to the scientific literature by bridging theoretical and empirical insights, offering region-specific findings and recommendations based on a comparative analysis across diverse European contexts. These findings provide conceptual and methodological tools to better design, evaluate, and scale NbS for transformative, equitable, and climate-resilient water governance.

    Consulter sur www.mdpi.com
  • Wang, Z., Ma, C., Wu, J., & Wu, T. (2025). Extreme precipitation risk assessment with improved WOA-Optimized copula model under composite conditions. Theoretical and Applied Climatology, 156(8). https://doi.org/10.1007/s00704-025-05678-7

    An accurate study of extreme precipitation risk events is crucial for flood control, urban planning, and engineering design. The Copula function effectively handles uncertainties and nonlinear interactions among multiple hydrological variables, capturing complex correlations in extreme precipitation events for more precise risk assessments. Selecting the parameters of the Copula function is critical, as it defines the function’s shape and the dependence structure between variables, influencing its application. Traditional parameterization methods, like maximum likelihood estimation and least squares, often require large datasets and distribution assumptions, making them cumbersome for high-dimensional data. This research presents a model using an enhanced whale optimization algorithm to estimate Copula parameters (CLCWOA-Copula), aiming to assess return period (RP) and failure probability associated with extreme precipitation risk events. Monthly precipitation data from Zhengzhou, China, from 1950 to 2024 is analyzed, using the 90th percentile as the extreme precipitation threshold. Marginal distributions are fitted using the P-III and gamma distributions, etc., which are then combined using CLCWOA-Copula to analyze coincident RP, joint RP, Kendall RP, and failure probability under composite conditions. The results demonstrate that this optimization method possesses strong global search capabilities and parallel computing abilities, yielding optimal Copula parameter values within few iterations and selecting the best-fit Copula function based on AIC, R², and RMSE. The Kendall RP and failure probability offer more accurate tools for extreme precipitation risk analysis; when Pmax reaches 540 mm, P90 reaches 1080 mm, or R90 reaches 0.83, a one-in-a-century extreme precipitation event is indicated. This study provides important insights for risk metrics applicable to extreme weather. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.

  • Dantas, L. G., Ferreira, A. J. F., Pinto Junior, J. A., Cortes, T. R., Neves, D. J. D., de Oliveira, B. F. A., & da Silveira, I. H. (2025). Projections of extreme weather events according to climate change scenarios and populations at-risk in Brazil. Climatic Change, 178(8). https://doi.org/10.1007/s10584-025-03989-2

    Extreme weather events, such as heat waves, heavy rainfall and droughts, have become more frequent and intense in Brazil. According to climate change scenarios, this trend, which has a negative impact on people’s health and living conditions, will continue. Here, we analysed indicators for extreme weather events resulting from climate change, projected for the 21st century, alongside socio-demographic indicators for Brazilian municipalities, in an attempt to identify populations exposed to the risks of the climate crisis. We calculated the values of indicators for extreme air temperature and precipitation events, based on NEX-GDDP-CMIP6 data, for a reference period and for the future, as well as socio-demographic indicators based on recent census data. Using Spearman’s coefficient, we then calculated anomaly indicators for the future time intervals and analysed correlations with the socio-demographic indicators. Our results indicate a reduction in cold days and an increase in hot days and heat waves in both scenarios (SSP2-4.5 and SSP5-8.5), with the most changes occurring in the highest emission scenario. The extreme precipitation indicators suggest both an increase and a reduction in intense precipitation and droughts in a number of the country’s regions. The projected changes are more intense in the highest emission scenario, and in the North and Northeast regions. We noted a trend for greatest occurrence of extreme events in locations with a higher proportion of Black, Parda/Brown, Indigenous and Quilombola populations, and the socially vulnerable. We recommend that policies to adapt and mitigate the impacts of climate change focus on reducing inequalities and promoting climate justice. © The Author(s) 2025.

  • Yao, Y., Li, X., Wang, L., & Li, H. (2025). Future Projection of Rainstorm and Flood Disaster Risk in Sichuan-Chongqing Region under CMIP6 Different Climate Change Scenarios. Plateau Meteorology, 44(4), 943–960. https://doi.org/10.7522/j.issn.1000-0534.2024.00108

    In recent years,rapid urbanization and global warming have led to frequent and severe rainstorm and flood disasters in the Sichuan-Chongqing region. This change will not only have a serious impact on the ecological environment and socio-economic development of the area,but also significantly increase the pressure on urban infrastructure and threaten the safety of people's lives and property. Therefore,it is particularly important to scientifically and accurately analyze the disaster risk of rainstorm and flood in Sichuan-Chongqing region in the past and future. This paper utilized daily precipitation data from 50 selected meteorological stations in the Sichuan-Chongqing region,precipitation data from 5 CMIP6 models,gridded population and economic data under Shared Socioeconomic Pathways(SSPs),as well as DEM and land use remote sensing data. Firstly,using Taylor diagrams,quantitative indices(S),and standardized anomaly sequences,the study evaluated the simulation performance of 5 individual CMIP6 models,an equal-weighted aggregation of 5 models(EWA-5),and unequally-weighted aggregations of 5 models(UEWA-5)for five selected extreme precipitation indices. Then,by building a comprehensive risk assessment model of rainstorm and flood disaster based on disaster risk and vulnerability of disaster bearing body,the study conducted risk assessments,future projections,and comparative analyses of rainstorm and flood disasters during baseline(1995-2014)and future near-term(2025-2044)and long-term (2045-2064)periods under three different climate change scenarios(SSP1-2. 6,SSP2-4. 5,SSP5-8. 5). Results indicated:(1)The EC-Earth3 model performed best in simulating the five extreme precipitation indices,with correlation coefficients between simulated and observed values of 0. 78 for R95p,0. 90 for RX1day,and 0. 77 for RX5day. Overall,the simulation performance of UEWA-5 exceeded that of EWA-5.(2)During the baseline period,central Sichuan exhibited high values for the five extreme precipitation indices,followed by eastern Sichuan and Chongqing,while western Sichuan showed lower values. The year 1998 recorded peak values for all five indices,with a maximum single-day precipitation of 86 mm for RX1day and an intensity(SDII)value of 11. 3 mm·d-1.(3)In future periods,the five extreme precipitation indices display a spatial distribution characterized by higher values in central regions and lower values around the periphery. Higher levels of social vulnerability and radiative forcing correlate with larger values of extreme precipitation indices. Comparing the two future periods,values of the indices are larger in the long term,notably with R95p averaging 846. 8 mm,an increase of 169. 2 mm compared to the near term.(4)During historical periods,areas with higher comprehensive risk of rainstorm and flood disasters were concentrated in central Sichuan and downtown Chongqing. In the two future periods,the high and moderately high-risk areas in central Sichuan are expected to expand,while the moderate-risk areas will shrink. The range of low-risk areas in the western Sichuan Plateau will also decrease,and the risk levels in southern Sichuan and eastern Sichuan-Chongqing border areas will respectively decrease to moderate-low and low-risk zones. Comparing the two future periods,the range of moderately high and moderate-risk areas in central Sichuan is expected to expand,while southwestern Chongqing will transition to a moderate-risk area in the long term. Other regions will generally maintain their original risk levels. Changes in disaster risk levels in the Sichuan-Chongqing region are less pronounced with increasing social vulnerability and radiative forcing,especially in the western Sichuan Plateau and northeastern Sichuan,where changes in disaster risk levels are minimal. The study results can provide important references for reducing disaster risks,enhancing emergency response capabilities,and making scientifically informed decisions for disaster prevention in the Sichuan-Chongqing region. © Editorial Department of Plateau Meteorology.

  • Yu, K., Mohapatra, S., Chen, Y., Jiang, P., & Tong, X. (2025). Interactive Effects of Climate Change and Contaminants in Aquatic Ecosystems on Environmental-Human Health. Current Pollution Reports, 11(1). https://doi.org/10.1007/s40726-025-00379-1

    Purpose of the Review: Climate change is intensifying the pressures on aquatic ecosystems by altering the dynamics of contaminants, with cascading effects on ecological and human health. This review synthesizes recent evidence on how rising temperatures, altered precipitation patterns, and extreme weather events influence chemical and microbial contaminant dynamics in aquatic environments. Recent Findings: Key findings reveal that elevated temperatures enhance phosphorus pollution and algal blooms, increase heavy metal release from sediments, and promote the mobilization of organic pollutants. Concurrently, climate change exacerbates microbial contamination by facilitating the spread of waterborne microbial contaminants, especially posing more pressure to antimicrobial resistance-related contaminants through temperature-driven horizontal gene transfer and extreme precipitation events. Complex interactions between chemical and microbial contaminants like heavy metals co-selecting for antibiotic resistance further amplify risks. The compounded effects of climate change and contaminants threaten water quality, ecosystem resilience, and public health, particularly through increased toxicant exposure via seafood and waterborne disease outbreaks. Despite growing recognition of these interactions, critical gaps remain in understanding their synergistic mechanisms, especially in data-scarce regions. Summary: This review highlights the urgent need for integrated monitoring, predictive modeling, and adaptive policies under a One Health framework to mitigate the multifaceted impacts of climate-driven contamination. Future research should prioritize real-world assessments of temperature effects, urban overflow dynamics during extreme weather, and the socio-behavioral dimensions of contaminant spread to inform effective mitigation strategies. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.

  • Leclerc, T., Lessard, L., & Saint-Charles, J. (2024). Entendre et comprendre les expériences de désastre par la recherche narrative. Intervention, 159, 107–120. https://doi.org/10.7202/1111616ar

    Les événements météorologiques extrêmes (EME) et les désastres qu’ils entrainent provoquent des conséquences psychosociales qui sont modulées en fonction de différents facteurs sociaux. On constate aussi que les récits médiatiques et culturels qui circulent au sujet des EME ne sont pas représentatifs de l’ensemble des expériences de personnes sinistrées : celles qui en subissent les conséquences les plus sévères tendent aussi à être celles qu’on « entend » le moins dans l’espace public. Ces personnes sont ainsi susceptibles de vivre de l’injustice épistémique, ce qui a des effets délétères sur le soutien qu’elles reçoivent. Face à ces constats s’impose la nécessité de mieux comprendre la diversité des expériences d’EME et d’explorer des stratégies pour soutenir l’ensemble des personnes sinistrées dans leur rétablissement psychosocial. Cet article soutient que la recherche narrative peut contribuer à répondre à ces objectifs. En dépeignant des réalités multiples, la recherche narrative centrée sur les récits de personnes sinistrées présente aussi un intérêt significatif pour l’amélioration des pratiques d’intervention en contexte de désastre. , Extreme weather events (EWE) and their resulting disasters cause psychosocial consequences that are moderated by different social factors. Media and cultural accounts of EWEs do not represent the full range of disaster survivor experiences, that is, those who experienced the most severe consequences also tend to be those least “heard” in the public arena. These people are therefore most likely to experience forms of epistemic injustice that negatively impact the support offered to cope with disaster. Considering these findings, there is a need to better understand the diversity of EWE experiences and explore strategies for supporting all disaster survivors in their psychosocial recovery. This article argues that narrative research can help meet these needs. By portraying the multiple realities of people affected by EWEs, narrative research focusing on the stories of disaster survivors is also of significant interest for improving intervention practices in this context.

    Consulter sur id.erudit.org
  • Low, Y., & Gyakum, J. R. (2025). Planetary-Scale Dynamics of Extreme Precipitation Regimes: Precursors and Contributors to Intensity and Longevity. Monthly Weather Review, 153(5), 885–905. https://doi.org/10.1175/MWR-D-24-0044.1

    Abstract Extreme precipitation is often challenging to predict but has substantial societal impacts, especially when it is persistent and affects a large region. We analyze Rossby wave packets, jet streams, atmospheric blocking, Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO) and elucidate the associated large-scale physical mechanisms contributing to the occurrence and persistence of extreme precipitation regimes (EPRs) in eastern North America as identified in an earlier study. The large temporal and spatial scales of EPRs, as well as the climatological study of EPRs, distinguish this study from previous precipitation studies, which are mostly on shorter-duration events. EPRs are characterized by an unusually slow-moving and persistent large-scale synoptic-scale circulation structure favorable for the southerly flow of subtropical moisture into eastern North America. The strength of the southerly flow is critical in producing large precipitation rates. The favorable synoptic structure is established by the start of the EPR, moves very slowly eastward until the middle of the EPR, and then travels faster eastward by the end of the EPR. The persistence of midlatitude ridges and the long-wavelength and slow-moving nature of the synoptic structure are critical to the longevity of EPRs. The latent heat release associated with moisture transport and ascent in cyclones provides a feedback mechanism contributing to the persistence. MJO phase 3 is favored before the EPR start, while phases 4 and 5 are favored during the EPR. During EPRs, there is no significant preference for El Niño or La Niña conditions, but a negative Pacific decadal oscillation (PDO) is favored. Significance Statement Cool-season extreme precipitation regimes often lead to flooding and other societal impacts and represent a significant forecast challenge. We analyze large-scale weather patterns and physical mechanisms in the North Pacific and North America contributing to the occurrence and persistence of extreme precipitation regimes. Recognizing them could promote their predictability since the North Pacific is a climatologically favored area for persistent anomalous large-scale weather patterns. The regimes are characterized by an unusually slow-moving and persistent large-scale weather pattern favoring the southerly flow of subtropical moisture into eastern North America. The persistence, size, and slow-moving nature of the weather pattern are critical to the regimes’ longevity. Storms tracking on the west of high pressure areas provide a feedback mechanism that helps maintain the regimes.

    Consulter sur journals.ametsoc.org
  • Pechlivanidis, I. G., Du, Y., Bennett, J., Boucher, M.-A., Chang, A. Y. Y., Crochemore, L., Dasgupta, A., Di Baldassarre, G., Luterbacher, J., Pappenberger, F., Ramos, M.-H., Slater, L., Uhlenbrook, S., Wetterhall, F., Wood, A., Lavado-Casimiro, W., Yoshimura, K., Imhoff, R., Van Oevelen, P. J., … Werner, M. (2025). Enhancing Research-to-Operations in Hydrological Forecasting: Innovations across Scales and Horizons. Bulletin of the American Meteorological Society, 106(5), E894–E919. https://doi.org/10.1175/BAMS-D-24-0322.1

    Abstract Over the past 20 years, the Hydrological Ensemble Prediction Experiment (HEPEX) international community of practice has advanced the science and practice of hydrological ensemble prediction and its application in impact- and risk-based decision-making, fostering innovations through cutting-edge techniques and data that enhance water-related sectors. Here, we present insights from those 20 years on the key priorities for (co)creating broadly applicable hydrological forecasting systems that add value across spatial scales and time horizons. We highlight the advancement of hydrological forecasting chains through rigorous data management that incorporates diverse, high-quality data sources, data assimilation techniques, and the application of artificial intelligence (AI) to improve predictive accuracy. HEPEX has played a critical role in enhancing the reliability of water resources and water-related risk management globally by standardizing ensemble forecasting. This effort complements HEPEX’s broader initiative to strengthen research to operations, making innovative forecasting solutions both practical and accessible. Additionally, efforts have been made toward supporting the United Nations Early Warnings for All initiative through developing robust and reliable early warning systems by means of global training, education and capacity development, and the sharing of technology. Finally, we note that the integration of advanced science, user-centric methods, and global collaboration can provide a solid framework for improving the prediction and management of hydrological extremes, aligning forecasting systems with the dynamic needs of water resource and risk management in a changing climate. To effectively meet future demands, it is crucial to accelerate the integration of innovative science within operational frameworks, fostering adaptable and resilient hydrological forecasting systems globally.

    Consulter sur journals.ametsoc.org
  • Le Cauchois, P., Doucet, S., Bouattour, O., McQuaid, N., Beral, H., Kõiv-Vainik, M., Bichai, F., McCarthy, D., St-Laurent, J., Dagenais, D., Bennekrela, N., Guerra, J., Hachad, M., Kammoun, R., & Dorner, S. (2025). Full-scale characterization of the effects of a bioretention system on water quality and quantity following the replacement of a mixed stormwater and combined sewer system. Blue-Green Systems, 7(1), 43–62. https://doi.org/10.2166/bgs.2025.029

    ABSTRACT Urbanization is leading to more frequent flooding as cities have more impervious surfaces and runoff exceeds the capacity of combined sewer systems. In heavy rainfall, contaminated excess water is discharged into the natural environment, damaging ecosystems and threatening drinking water sources. To address these challenges aggravated by climate change, urban blue-green water management systems, such as bioretention cells, are increasingly being adopted. Bioretention cells use substrate and plants adapted to the climate to manage rainwater. They form shallow depressions, allowing infiltration, storage, and gradual evacuation of runoff. In 2018, the City of Trois-Rivières (Québec, Canada) installed 54 bioretention cells along a residential street, several of which were equipped with access points to monitor performance. Groundwater quality was monitored through the installation of piezometers to detect potential contamination. This large-scale project aimed to improve stormwater quality and reduce sewer flows. The studied bioretention cells reduced the flow and generally improved water quality entering the sewer system, as well as the quality of stormwater, with some exceptions. Higher outflow concentrations were observed for contaminants such as manganese and nitrate. The results of this initiative provide useful recommendations for similar projects for urban climate change adaptation.

    Consulter sur iwaponline.com
  • El-Mousawi, F., Ortiz, A. M., Berkat, R., & Nasri, B. (2023). The Impact of Flood Adaptation Measures on Affected Population’s Mental Health: A mixed method Scoping Review. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.04.27.23289166

    AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.

    Consulter le document
  • Cioffi, F., De Bonis Trapella, A., Giannini, M., & Lall, U. (2022). A Flood Risk Management Model to Identify Optimal Defence Policies in Coastal Areas Considering Uncertainties in Climate Projections. Water, 14(9), 1481. https://doi.org/10.3390/w14091481

    Coastal areas are particularly vulnerable to flooding from heavy rainfall, sea storm surge, or a combination of the two. Recent studies project higher intensity and frequency of heavy rains, and progressive sea level rise continuing over the next decades. Pre-emptive and optimal flood defense policies that adaptively address climate change are needed. However, future climate projections have significant uncertainty due to multiple factors: (a) future CO2 emission scenarios; (b) uncertainties in climate modelling; (c) discount factor changes due to market fluctuations; (d) uncertain migration and population growth dynamics. Here, a methodology is proposed to identify the optimal design and timing of flood defense structures in which uncertainties in 21st century climate projections are explicitly considered probabilistically. A multi-objective optimization model is developed to minimize both the cost of the flood defence infrastructure system and the flooding hydraulic risk expressed by Expected Annual Damage (EAD). The decision variables of the multi-objective optimization problem are the size of defence system and the timing of implementation. The model accounts for the joint probability density functions of extreme rainfall, storm surge and sea level rise, as well as the damages, which are determined dynamically by the defence system state considering the probability and consequences of system failure, using a water depth–damage curve related to the land use (Corine Land Cover); water depth due to flooding are calculated by hydraulic model. A new dominant sorting genetic algorithm (NSGAII) is used to solve the multi-objective problem optimization. A case study is presented for the Pontina Plain (Lazio Italy), a coastal region, originally a swamp reclaimed about a hundred years ago, that is rich in urban centers and farms. A set of optimal adaptation policies, quantifying size and timing of flood defence constructions for different climate scenarios and belonging to the Pareto curve obtained by the NSGAII are identified for such a case study to mitigate the risk of flooding and to aid decision makers.

    Consulter sur www.mdpi.com
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Page 1 de 6
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-11-06 07 h 30 (UTC)

Explorer

Axes du RIISQ

  • 1 - aléas, vulnérabilités et exposition (66)
  • 2 - enjeux de gestion et de gouvernance (40)
  • 3 - aspects biopsychosociaux (67)
  • 4 - réduction des vulnérabilités (43)
  • 5 - aide à la décision, à l’adaptation et à la résilience (50)

Enjeux majeurs

  • Inégalités et événements extrêmes
  • Prévision, projection et modélisation (26)
  • Risques systémiques (20)

Lieux

  • Canada (39)
  • Québec (province) (21)
  • États-Unis (13)
  • Europe (4)

Secteurs et disciplines

  • Nature et Technologie (91)
  • Société et Culture (63)
  • Santé (37)

Types d'événements extrêmes

  • Évènements liés au froid (neige, glace)
  • Inondations et crues (64)
  • Sécheresses et canicules (14)
  • Feux de forêts (9)

Types d'inondations

  • Fluviales (27)
  • Par embâcle (7)
  • Submersion côtière (7)
  • Pluviales (5)

Type de ressource

  • Article de revue (94)
  • Chapitre de livre (2)
  • Document (1)
  • Prépublication (2)
  • Rapport (3)
  • Thèse (11)

Année de publication

  • Entre 1900 et 1999 (1)
    • Entre 1990 et 1999 (1)
      • 1991 (1)
  • Entre 2000 et 2025 (112)
    • Entre 2000 et 2009 (2)
      • 2002 (1)
      • 2007 (1)
    • Entre 2010 et 2019 (28)
      • 2011 (1)
      • 2012 (2)
      • 2014 (2)
      • 2015 (2)
      • 2016 (5)
      • 2017 (2)
      • 2018 (8)
      • 2019 (6)
    • Entre 2020 et 2025 (82)
      • 2020 (12)
      • 2021 (9)
      • 2022 (16)
      • 2023 (11)
      • 2024 (13)
      • 2025 (21)

Langue de la ressource

  • Anglais (69)
  • Français (7)

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web