UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Enjeux majeurs
  • Inégalités et événements extrêmes

Résultats 219 ressources

Recently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 11
  • Page 1 de 11
Résumés
  • Ahmad, M. I., Shen, Q., Boota, M. W., Liu, R., & Ma, H. (2025). Natural Disasters and Rehabilitation: Post‐Disaster Aid, Corruption, Misallocation, and Mistargeting. Sustainable Development, sd.70225. https://doi.org/10.1002/sd.70225

    ABSTRACT The increasing frequency of natural disasters, such as floods, droughts, and tsunamis, has made vulnerable communities less resilient, pushing them toward long‐term poverty and food insecurity. Effective post‐disaster rehabilitation is critical to restoring livelihoods, infrastructure, and food security. However, challenges such as corruption, misallocation, and mistargeting undermine post‐disaster aid programs. This study systematically reviews 86 peer‐reviewed articles (1990–2023) using the preferred reporting items for systematic reviews and meta‐analyses (PRISMA) protocol to investigate aid inefficiencies in disaster recovery. The findings reveal that aid often fails to reach the most affected communities, being diverted to unaffected areas due to political influence and local elites, exacerbating inequalities. Corruption further hampers institutional performance and long‐term disaster resilience efforts. The study calls for transparent, accountable, and inclusive strategies for aid distribution, aligning with SDG 10 (reduced inequalities) and SDG 11 (sustainable cities and communities). Future research should focus on gender‐sensitive strategies, local governance, and technological innovations to enhance aid transparency and effectiveness.

    Consulter sur onlinelibrary.wiley.com
  • Rückle, K., Rohrer, M., Mihók, B., Johansson, M., Andersson, H., Pomee, M. S., Vergadi, E., Rouva, G., Agrawal, A., Balázs, B., Brattich, E., Carelli, M., De Luca, C., Di Sabatino, S., Krishnan V, S., Molter, A., Pilla, F., Ruggieri, P., Scolobig, A., & Hertig, E. (2025). Determinants and relationships of climate change, climate change hazards, mental health, and well-being: a systematic review. Frontiers in Psychiatry, 16, 1601871. https://doi.org/10.3389/fpsyt.2025.1601871

    Introduction Impacts of climate change on human health receive increasing attention. However, the connections of climate change with well-being and mental health are still poorly understood. Objective As part of the Horizon Europe project TRIGGER, we aim to deepen the understanding of the relationships between climate change and human mental health and well-being in Europe by focusing on environmental and socio-individual determinants. Methods This study is a systematic literature review based on the PRISMA guidelines using Embase, Medline and Web of Science. Results 143 records were retrieved. The results show that climate change and its specific hazards (air pollution, floods, wildfires, meteorological variables, and temperature extremes) impact human well-being and mental health. Discussion Mental health and well-being outcomes are complex, extremely individual, and can be long lasting. Determinants like the living surrounding, human’s life activities as well as socio-individual determinants alter the linkage between climate change and mental health. The same determinant can exert both a pathogenic and a salutogenic effect, depending on the outcome. Knowing the effects of the determinants is of high relevance to improve resilience. Several pathways were identified. For instance, higher level of education and female gender lead to perceiving climate change as a bigger threat but increase preparedness to climate hazards. Elderly, children and adolescents are at higher risks of mental health problems. On the other hand, social relation, cohesiveness and support from family and friends are generally protective. Green and blue spaces improve well-being and mental health. Overall, comparing the different hazard-outcome relationships is difficult due to varying definitions, measurement techniques, spatial and temporal range, scales, indicators and population samples. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/home , identifier CRD42023426758.

    Consulter sur www.frontiersin.org
  • Zhang, J., Chu, C., & Wang, P. (2025). Research on Extreme Precipitation Risk Considering Physical-social-environmental Attributes. Journal of Disaster Prevention and Mitigation Engineering, 45(4), 736–744. https://doi.org/10.13409/j.cnki.jdpme.20241220001

    This study aims to conduct a grid-scale extreme precipitation risk assessment in Xuanwu District, Nanjing, so as to fill the gaps in existing indicator systems and improve the precision of risk characterization. By integrating physical, social, and environmental indicators, a risk assessment framework was constructed to comprehensively represent the characteristics of extreme precipitation risk. This study applied the entropy weight method to calculate indicator weights, combined with ArcGIS technology and the K-means clustering algorithm, to analyze the spatial distribution characteristics of risk under a 100-year extreme precipitation scenario and to identify key influencing indicators across different risk levels. The results showed that extreme precipitation risk levels in Xuanwu District exhibited significant spatial heterogeneity, with an overall distribution pattern of low risk in the central area and high risk in the surrounding areas. The influence mechanisms of key indicators showed tiered response characteristics: the low-risk areas were mainly controlled by the submerged areas of urban and rural, industrial and mining, and residential lands, water body area, soil erosion level, and normalized difference vegetation index (NDVI). The medium-risk areas were influenced by the submerged areas of urban and rural, industrial and mining, residential lands, the submerged areas of forest land, emergency service response time to disaster-affected areas, soil erosion level, and NDVI. The high-risk areas were jointly dominated by the submerged areas of urban and rural, industrial and mining, residential lands, the submerged areas of forest land, and NDVI. The extremely high-risk areas were driven by three factors—the submerged areas of forest land, emergency service response time to disaster-affected areas, and the proportion of the largest patch to the landscape area. This study improves the indicator system for extreme precipitation risk assessment and clarifies the tiered response patterns of risk-driving indicators, providing a scientific basis for developing differentiated flood control strategies in Xuanwu District while offering important theoretical support for improving regional flood disaster resilience. © 2025 Editorial Office of Journal of Disaster Prevention and Mitigation Engineering. All rights reserved.

  • Ahmad, J., Eisma, J. A., & Sajjad, M. (2025). Significant Attribution of Urbanization to Triggering Extreme Rainfall in the Urban Core—A Case of Dallas–Fort Worth in North Texas. Urban Science, 9(8). https://doi.org/10.3390/urbansci9080295

    While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, which has minimal orographic and coastal influences, to analyze the urban impact on rainfall. DFW was divided into 256 equal grids (10 km × 10 km) and grouped into four clusters using K-means clustering based on the urbanization ratio. Using Multi-Sensor Precipitation Estimator data (with a spatial resolution of 4 km), we examined rainfall exceeding the 95th percentile (i.e., extreme rainfall) on low synoptic days to highlight localized effects. The urban heat island (UHI) effect was estimated based on the average temperature difference between the urban core and the other three non-urban clusters. Multiple rainfall events were monitored on an hourly basis. Potential linkages between urbanization, the UHI, extreme rainfall, wind speed, wind direction, convective inhibition, and convective available potential energy were evaluated. An intense UHI within the DFW area triggered a tornado, resulting in maximum rainfall in the urban core area under high wind speeds and a dominant wind direction. Our findings further clarify the role of urbanization in generating extreme rainfall events, which is essential for developing better policies for urban planning in response to intensifying extreme events due to climate change. © 2025 by the authors.

  • Wang, C.-C., Van Nguyen, D., Van Vu, T., Nga, P. T. T., Chuang, P.-Y., & Truong, K. B. (2025). Investigation of an extreme rainfall event during 8–12 December 2018 over central Vietnam – Part 2: An evaluation of predictability using a time-lagged cloud-resolving ensemble system. Natural Hazards and Earth System Sciences, 25(8), 2803–2822. https://doi.org/10.5194/nhess-25-2803-2025

    This is the second part of a two-part study that investigates an extreme rainfall event that occurred from 8 to 12 December 2018 over central Vietnam (referred to as the D18 event). In this part, the study aims to evaluate the practical predictability of the D18 event using the quantitative precipitation forecasts (QPFs) from a time-lagged cloud-resolving ensemble system. To do this, 29 time-lagged (8 d in forecast range) high-resolution (2.5 km) members were run, with the first member initialized at 12:00 UTC on 3 December and the last one at 12:00 UTC on 10 December 2018. Between the first and the last members are multiple members that were executed every 6 h. The evaluation results reveal that the cloud-resolving model (CReSS) predicted the rainfall fields in the short range (less than 3 d) well for 10 December (the rainiest day). Particularly, the CReSS model shows high skill in heavy-rainfall QPFs for this date with a similarity skill score (SSS) greater than 0.5 for both the last five members and the last nine members. The good results are due to the model having good predictions of relevant meteorological variables such as surface winds. However, the predictive skill is reduced at lead times longer than 3 d, and it is challenging to achieve good QPFs for rainfall thresholds greater than 100 mm at lead times longer than 6 d. These results also confirmed our scientific hypothesis that the cloud-resolving time-lagged ensemble system (using the CReSS model) improved the QPFs of this event in the short range. Furthermore, the results also demonstrated that a decent QPF can be made at a longer lead time (by a member initialized at 18:00 UTC on 4 December). In addition, the ensemble-based sensitivity analysis (ESA) of 24 h rainfall in central Vietnam shows that it is highly sensitive to initial conditions, not only at lower levels but also at upper levels. The rainfall is sensitive to both kinematics and moisture convergence at low levels, and such sensitivities decrease with increasing lead time. The ESA also facilitates a better understanding of the mechanisms in the D18 event, implying that it is meaningful to apply ESA to control initial conditions in the future. © Author(s) 2025.

  • Kim, M.-K., & Xu, D. (2025). Seismic Performance Assessment of Gravity Dams for Urban Flood Risk Mitigation Using the Scaled Boundary Finite Element Method (SBFEM). Hydrology, 12(8). https://doi.org/10.3390/hydrology12080209

    Rapid urbanization and climate change have intensified urban flood risks, necessitating resilient upstream infrastructure to ensure metropolitan water security and effective flood mitigation. Gravity dams, as critical components of urban flood protection systems, regulate discharge to downstream urban areas. Gravity dams are critical for regulating flood discharge, yet their seismic vulnerability poses significant challenges, particularly under compound effects involving concurrent seismic loading and climate-induced elevated reservoir levels. This study introduces a novel seismic analysis framework for gravity dams using the scaled boundary finite element method (SBFEM), which efficiently models dam–water and dam–foundation interactions in infinite domains. A two-dimensional numerical model of a concrete gravity dam, subjected to realistic seismic loading, was developed and validated against analytical solutions and conventional finite element method (FEM) results, achieving discrepancies as low as 0.95% for static displacements and 0.21% for natural frequencies. The SBFEM approach accurately captures hydrodynamic pressures and radiation damping, revealing peak pressures at the dam heel during resonance and demonstrating computational efficiency with significantly reduced nodal requirements compared to FEM. These findings enhance understanding of dam behavior under extreme loading. The proposed framework supports climate-adaptive design standards and integrated hydrological–structural modeling. By addressing the seismic safety of flood-control dams, this research contributes to the development of resilient urban water management systems capable of protecting metropolitan areas from compound climatic and seismic extremes. © 2025 by the authors.

  • Liu, H., Zhang, Z., & Liu, B. (2025). Spatial–Temporal Characteristics and Drivers of Summer Extreme Precipitation in the Poyang Lake City Group (PLCG) from 1971 to 2022. Remote Sensing, 17(16). https://doi.org/10.3390/rs17162915

    Global warming has intensified the hydrological cycle, resulting in more frequent extreme precipitation events and altered spatiotemporal precipitation patterns in urban areas, thereby increasing the risk of urban flooding and threatening socio-economic and ecological security. This study investigates the characteristics of summer extreme precipitation in the Poyang Lake City Group (PLCG) from 1971 to 2022, utilizing the China Daily Precipitation Dataset and NCEP/NCAR reanalysis data. Nine extreme precipitation indices were examined through linear trend analysis, Mann–Kendall tests, wavelet transforms, and correlation methods to quantify trends, periodicity, and atmospheric drivers. The key findings include: (1) All indices exhibited increasing trends, with RX1Day and R95p exhibiting significant rises (p < 0.05). PRCPTOT, R20, and SDII also increased, indicating heightened precipitation intensity and frequency. (2) R50, RX1Day, and SDII demonstrated east-high-to-west-low spatial gradients, whereas PRCPTOT and R20 peaked in the eastern and western PLCG. More than over 88% of stations recorded rising trends in PRCPTOT and R95p. (3) Abrupt changes occurred during 1993–2009 for PRCPTOT, R50, and SDII. Wavelet analysis revealed dominant periodicities of 26–39 years, linked to atmospheric oscillations. (4) Strong subtropical highs, moisture convergence, and negative OLR anomalies were closely associated with extreme precipitation. Warmer SSTs in the eastern equatorial Pacific amplified precipitation in preceding seasons. This study provides a scientific basis for flood prevention and climate adaptation in the PLCG and highlighting the region’s vulnerability to monsoonal shifts under global warming. © 2025 by the authors.

  • Monckeberg, E., & Gómez, S. (2025). Exploring the potential of coastal cities to address climate change towards an inclusive, equitable and politically engaged orientation. Anthropocene Coasts, 8(1). https://doi.org/10.1007/s44218-025-00099-5

    In the context of the global climate crisis, the analysis and strengthening of adaptive capacities in coastal urban environments has become imperative. Nearly 40% of the global population lives within 100 km of the coastline, making them critical research hotspots due to their particular vulnerability. This qualitative literature review takes a transdisciplinary approach and prioritizes research that addresses specific challenges and solutions for these vulnerable environments, with an emphasis on resilience to phenomena such as sea level rise, flooding and extreme weather events. The review analyzes articles that offer a holistic view, encompassing green and blue infrastructures, community needs and governance dynamics. It highlights studies that propose innovative strategies to foster citizen participation and explicitly address aspects such as climate justice. By synthesizing interdisciplinary perspectives and local knowledge, this review aims to provide a comprehensive framework for climate adaptation in coastal urban areas. The findings have the potential to inform public policy and urban planning practices. © The Author(s) 2025.

  • Lee, T., & Ouarda, T. B. M. J. (2025). Climate teleconnection-driven stochastic simulation for future water-related risk management. Journal of Hydrology, 662, 133834. https://doi.org/10.1016/j.jhydrol.2025.133834

    Water risk management has been adversely affected by climate variations, including recent climate change. Climate variations have highly impacted the hydrological cycles in the atmosphere and biosphere, and their impact can be defined with the teleconnection between climate signals and hydrological variables. Water managers should practice future risk management to mitigate risks, including the impact of teleconnection, and stochastically simulated scenarios can be employed as an effective tool to take advantage of water management preparation. A stochastic simulation model for hydrological variables teleconnected with climate signals is very useful for water managers. Therefore, the objective of the current study was to develop a novel stochastic simulation model for the simulation of synthetic series teleconnected with climate signals. By jointly decomposing the hydrological variables and a climate signal with bivariate empirical mode decomposition (BEMD), the bivariate nonstationary oscillation resampling (B-NSOR) model was applied to the significant components. The remaining components were simulated with the newly developed method of climate signal-led K-nearest neighbor-based local linear regression (CKLR). This entire approach is referred to as the climate signal-led hydrologic stochastic simulation (CSHS) model. The key statistics were estimated from the 200 simulated series and compared with the observed data, and the results showed that the CSHS model could reproduce the key statistics including extremes while the SML model showed slight underestimation in the skewness and maximum values. Additionally, the observed long-term variability of hydrological variables was reproduced well with the CSHS model by analyzing drought statistics. Moreover, the Hurst coefficient with slightly higher than 0.8 was fairly preserved by the CSHS model while the SML model is underestimated as 0.75. The overall results demonstrate that the proposed CSHS model outperformed the existing shifting mean level (SML) model, which has been used to simulate hydroclimatological variables. Future projections until 2100 were obtained with the CSHS model. The overall results indicated that the proposed CSHS model could represent a reasonable alternative to teleconnect climate signals with hydrological variables.

    Consulter sur www.sciencedirect.com
  • Latif, S., El Ouadi, I., & Ouarda, T. B. M. J. (2025). Copula-based joint distribution modelling of precipitation, temperature and humidity events in the assessments of agricultural risks, with a case study in Morocco. Stochastic Environmental Research and Risk Assessment, 39(9), 4017–4061. https://doi.org/10.1007/s00477-025-03047-4

    The agriculture sector is profoundly impacted by the abiotic stresses in arid or semi-arid regions that experience extreme weather patterns related to temperature (T), precipitation (P), humidity (H), and other factors. This study adopts a flexible approach that incorporates the D-vine copula density to analyze trivariate (and bivariate) joint and conditional hazard risk. The methodology was applied to a case study in the Ait Ben Yacoub region of Morocco. Monthly series for T, H, and P were modeled using the Weibull-2P and Weibull-3P models, selected based on fitness statistics. The survival BB8 copula was best described as joint dependence for pair T–P, rotated BB8 270 degrees copula for T–H, while rotated Joe 270 degrees copula for P–H. The analysis of joint probability stress focused on both primary joint scenarios (for OR and AND-hazard conditions) and conditional return periods (RPs) for trivariate and bivariate case. Lower univariate RPs resulted in higher marginal quantiles for T and lower for H and P events. Lower trivariate (and bivariate) AND-joint RPs (or higher concurrence probabilities) were associated with higher T with lower P and H quantiles. The occurrence of trivariate (and bivariate) events was less frequent in the AND-joint case compared to the OR-joint case. The conditional joint RP of T (or T with P, or T with H) was significantly affected by different P (at 10th and 25th percentile) and H (at 5th and 25th percentile) (or P, or H) conditions. Lower conditional RPs of T (or T with H, or T with P) had resulted at given low P and H (or low P, or low H levels). In conclusion, the estimated risk statistics are vital for the study region, highlighting the need for effective adaptation and resilience planning in agriculture crop management.

    Consulter sur doi.org
  • Zhekov, A., Bourgeois, B., & Poulin, M. (2025). Flooding stress influences productivity and modulates biodiversity effects in experimental grassland communities, shaping biodiversity–productivity relationships. American Journal of Botany, 112(7), e70063. https://doi.org/10.1002/ajb2.70063

    Abstract Premise Biodiversity loss and increasing extreme weather events disrupt the functioning of ecosystems and thus their ability to provide services. While the interplay among various climatic constraints, diversity and productivity has received increasing attention in the last decades, the role of flooding has been overlooked. Methods In a greenhouse experiment, we manipulated species richness and water regimes to evaluate the influence of flooding on species diversity–productivity relationships. We measured biomass production and partitioned net biodiversity effects into complementarity and selection effects. To link changes in biodiversity effects to underlying mechanisms, we evaluated the contribution of species richness, species identity, functional diversity and community‐level traits. Results Under flooding, biomass production decreased, and biodiversity effects were less frequently positive. By reducing the incidence of positive complementarity effects, flooding promoted a preponderance of selection effects. Flooding further favored competitive displacement by Phalaris arundinacea ; balanced contributions to selection effects from all functional groups at field capacity subsided under flooding when P. arundinacea became the single dominant species. As a result, its acquisitive leaf trait attributes contributed more to selection effects and biomass production under flooding, while root traits contributed less to complementarity effects at field capacity. Conclusions As an environmental stressor, flooding promoted the dominance of tolerant species and reduced the incidence of complementary species interactions in the experimental plant communities, clearly modulating the linkage between diversity and productivity.

    Consulter sur bsapubs.onlinelibrary.wiley.com
  • Poncet, N., Tramblay, Y., Lucas-Picher, P., Thirel, G., & Caillaud, C. (2025). Projections of extreme rainfall and floods in Mediterranean basins from an ensemble of convection-permitting models. Climatic Change, 178(8), 141. https://doi.org/10.1007/s10584-025-03983-8

    Floods have major impacts on the Mediterranean region, but little is currently known about their potential evolution in the context of climate change. This is due in particular to the limited ability of climate models to reproduce extreme meteorological events such as heavy rains that lead to flash floods, especially at the local scale over smaller basins. This study is the first to explore future flood scenarios over 12 Mediterranean basins using an ensemble of 12 high-resolution convection-permitting climate models and the GR5H hourly rainfall-runoff model. The results indicate an overall increase in flood intensity across all basins, particularly for the most severe events, but also a strong spatial variability in the change signal depending on the geographic location. There is good agreement among the convection-permitting climate models on an increase in hourly and daily rainfall extremes in the Mediterranean, but these changes are not strongly correlated with changes in flood-peak intensity, indicating that change in rainfall intensity alone is a poor predictor of future flood hazards. At present, this type of analysis is hampered by the short duration of the available high-resolution climate simulations. Longer timeseries would be required to better assess the robustness of the projected changes against climate variability.

    Consulter sur doi.org
  • Baruah, A., Spies, R., Devi, D., Cohen, S., Aristizabal, F., Nikrou, P., Tian, D., & Pruitt, C. (2025). Predicting synthetic rating curve adjustment factors with explainable machine learning for enhancing the United States operational flood inundation mapping framework. Journal of Hydrology, 662. https://doi.org/10.1016/j.jhydrol.2025.134086

    The increasing threats of global flood risk mandate rapid and accurate high-resolution flood modeling strategies over large scales. In the United States, the National Oceanic and Atmospheric Administration (NOAA) Office of Water Prediction (OWP) has operationalised a Flood Inundation Mapping (FIM) framework utilising the Height Above Nearest Drainage (HAND)-Synthetic Rating Curve (SRC) approach. It translates streamflow into stage and subsequently maps the inundation over the floodplain. It is a low-fidelity FIM framework, suitable for large-scale applications with much less computational effort. The SRCs are calculated for each river segment using Manning's equation; however, uncertainty in Manning's parameters and missing bathymetry impart bias in SRC calculation, and thus in FIM. An SRC adjustment factor (λsrc), introduced by OWP, calibrates SRCs against USGS rating curves, HEC-RAS 1D rating curves, and National Weather Service (NWS)-Categorical Flood Inundation Mapping (CatFIM) locations. Adjusted SRCs improve the FIM predictions but are limited to locations with the above data sources. In this paper, we develop machine learning models to predict the λsrc over the entire United States river network. Results show that the eXtreme Gradient Boosting model yielded the strongest predictability, with an R2 of 0.70. The impact of λsrc on FIM predictions is evaluated for Hurricane Matthew in North Carolina and synthetic flood events in 15 watersheds. For Hurricane Matthew flooding, the mean percentage improvements in Critical Success Index (CSI), Probability of Detection (POD), and F1 Score are 17.5%, 20% and 12.5%, while for synthetic events, the improvements are 2.59%, 4.93%, and 3.03%, respectively. © 2025 The Author(s)

  • Hu, X., Yang, A., Wu, S., & Tong, R. (2025). Black swans to gray rhinos: Robust decision making for Natech scenarios caused by floods. Journal of Loss Prevention in the Process Industries, 98. https://doi.org/10.1016/j.jlp.2025.105755

    Industrial facilities and critical infrastructure are affected by natural disasters with increasing probability, potentially resulting in serious health impacts, environmental pollution, and economic losses. Deep uncertainty about future scenarios leads to under-adaptation due to the inability of existing knowledge to cope with ambiguity and complexity. With scientific constraints, particularly in model limitations and scenario scarcity, estimating the likelihood of risk events and possible implications is challenging and error-prone. Using systems thinking to guide scenario planning, a Pressure-State-Response (PSR) model of Natech risk was developed to outline the uncertainty involved in the full course of the Natech event in this paper. Taking the flood-triggered Natech risks as an example, a robust decision-making (RDM) framework was adopted to analyze the impacts of future extreme rainfall scenarios on the city. Obtaining future rainfall scenarios through screening and quantitative analysis of uncertainties and their intervals of variability under the impact of climate change. By evaluating urban disaster curves that may be triggered in the future, an interpretive structural model (ISM) of the future urban response to the Natech accident scenario was constructed, and prioritized adaptation paths were selected to enhance urban resilience. © 2025 Elsevier Ltd

  • Cao, F., Chen, C., Zhang, C., & Xing, J. (2025). Risk identification and prevention of multi-level flood and typhoon prevention emergency drills. Progress in Disaster Science, 28. https://doi.org/10.1016/j.pdisas.2025.100458

    Amid increasing extreme weather events driven by global climate change, pre-emptive emergency drills are vital for strengthening disaster resilience. This paper focuses on risk identification and prevention in multi-level flood and typhoon prevention emergency drills, aiming to achieve effective risk management across administrative levels. Through literature review and expert consultation, 24 risk factors were hierarchically identified. A quantitative risk assessment model was developed by integrating the risk matrix and cloud model eigenvalues. The results show that risks are the most serious at municipal-level drills, with 20 risk factors (79.17 % of the total) at Level-III and above, decreasing at lower administrative levels (where risk level are categorized into Level-I (Major), Level-II (Large), Level-III (General), and Level-IV (Low) based on the risk matrix integrating likelihood and consequence levels, and Level-III and above risks may trigger resource wastage, drill failure, or even personnel casualties). Temporally, 39 risk factors at Level-III and above were concentrated in preparation stages across all administrative levels, declining to 3 such risk factors during rectification stage. Spatially, the number of risk factors peaked during the municipal-level and county-level preparation stages (11 risk factors respectively at Level-III and above), with their quantity gradually decreasing as the administrative level decreases and drill stages advance. Based on these findings, a systematic risk prevention matrix is proposed to offer targeted guidance for multi-level flood and typhoon prevention emergency drills in addressing climate change-induced disaster challenges. © 2025 The Authors

  • Schulte, L., Santisteban, J. I., Fuller, I. C., & Ballesteros-Cánovas, J. A. (2025). Editorial preface to special issue: Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events. Global and Planetary Change, 254. https://doi.org/10.1016/j.gloplacha.2025.105021

    Floods constitute the most significant natural hazard to societies worldwide. Population growth and unchecked development have led to floodplain encroachment. Modelling suggests that climate change will regionally intensify the threat posed by future floods, with more people in harm's way. From a global change perspective, past flood events and their spatial-temporal patterns are of particular interest because they can be linked to former climate patterns, which can be used to guide future climate predictions. Millennial and centennial time series contain evidence of very rare extreme events, which are often considered by society as ‘unprecedented’. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regime, we can better forecast their future occurrence. This Virtual Special Issue (VSI) entitled Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events comprises 14 papers that focus on how centennial and millennia-scale natural and documentary flood archives help improve future flood science. Specifically, documentation of large and very rare flood episodes challenges society's lack of imagination regarding the scale of flood disasters that are possible (what we term here, the “unknown unknowns”). Temporal and spatial flood behaviour and related climate patterns as well as the reconstruction of flood propagation in river systems are important foci of this VSI. These reconstructions are crucial for the provision of robust and reliable data sets, knowledge and baseline information for future flood scenarios and forecasting. We argue that it remains difficult to establish analogies for understanding flood risk during the current period of global warming. Most studies in this VSI suggest that the most severe flooding occurred during relatively cool climate periods, such as the Little Ice Age. However, flood patterns have been significantly altered by land use and river management in many catchments and floodplains over the last two centuries, thereby obscuring the climate signal. When the largest floods in instrumental records are compared with paleoflood records reconstructed from natural and documentary archives, it becomes clear that precedent floods should have been considered in many cases of flood frequency analysis and flood risk modelling in hydraulic infrastructure. Finally, numerical geomorphological analysis and hydrological simulations show great potential for testing and improving our understanding of the processes and factors involved in the temporal and spatial behaviour of floods. © 2025 The Authors

  • Guo, Z., Shi, X., Zhang, D., & Zhao, Q. (2026). Effects of long-term wetland variations on flood risk assessments in the Yangtze River Basin. Environmental Impact Assessment Review, 116. https://doi.org/10.1016/j.eiar.2025.108123

    Flooding is the most frequent natural disaster in the Yangtze River Basin (YRB), causing significant socio-economic damages. In recent decades, abundant wetland resources in the YRB have experienced substantial changes and played a significant role in strengthening the hydrological resilience to flood risks. However, wetland-related approaches remain underdeveloped for mitigating flood risks in the YRB due to the lack of considering long-term wetland effects in the flood risk assessment. Therefore, this study develops an wetland-related GIS-based spatial multi-index flood risk assessment model by incorporating the effects of wetland variations, to investigate the long-term implications of wetland variations on flood risks, to identify dominant flood risk indicators under wetland effects, and to provide wetland-related flood risk management suggestions. These findings indicate that wetlands in the Taihu Lake Basin, Wanjiang Plain, Poyang Lake Basin, and Dongting and Honghu Lake Basin could enhance flood control capacity and reduce flood risks in most years between 1985 and 2021 except years with extreme flood disasters. Wetlands in the Sichuan Basin have aggravated but limited impacts on flood risks. Precipitation in the Taihu Lake Basin and Poyang Lake Basin, runoff and vegetation cover in the Wanjiang Plain, GDP in the Taihu Lake Basin, population density in the Taihu lake Basin, Dongting and Honghu Lake Basin, and the Sichuan Basin are dominant flood risk indicators under wetland effects. Reasonably managing wetlands, maximizing stormwater storage capacity, increasing vegetation coverage in urbanized and precipitated regions are feasible suggestions for developing wetland-related flood resilience strategies in the YRB. © 2025 The Authors

  • Qiu, Y., Shi, X., & He, X. (2026). Enhancing flood prediction in the Lower Mekong River Basin by scale-independent interpretable deep learning model. Environmental Impact Assessment Review, 116. https://doi.org/10.1016/j.eiar.2025.108130

    Climate change has increased the frequency and intensity of extreme floods in the Lower Mekong River Basin (LMB). This study leverages the Long Short-Term Memory (LSTM) model to evaluate its performance in predicting river discharge across the LMB and to identify the key variables contributing to flood prediction through SHapley Additive exPlanation (SHAP) and Universal Multifractal (UM) analyses, in a scale-dependent and scale-independent manner, respectively. The performance of the LSTM model is satisfactory, with Nash–Sutcliffe Efficiency (NSE) values exceeding 0.9 for all subbasins when using all input features. The model tends to underestimate the largest peak flows in the midstream subbasins that experienced extreme rainfall events. According to SHAP, soil-related variables are important contributors to discharge prediction, with their impacts partially manifested through interactions with precipitation and runoff. Furthermore, the dominant contributing variables influencing flood prediction vary over time: soil-related variables and vegetation-related variables played a more significant role in earlier years, whereas hydrometeorological variables became more dominant after 2017. The UM analysis investigates the scaling behaviours of contributing variables, showing that hydrometeorological-related variables have a greater influence on predicting extreme discharge across the small temporal scales. Additionally, the UM analysis indicates that the model's performance improves as the temporal variability in extremes of the combined features decreases across 1 to 16 days. Overall, this study provides a comprehensive assessment of the LSTM model's performance in discharge prediction, emphasising the impact of the variability in the extremes of combined features through the scale-independent interpretation. These findings will offer valuable insights for stakeholders to improve flood risk management across the LMB. © 2025 The Authors

  • Golden, C. D., Childs, M. L., Mudele, O. E., Andriamizarasoa, F. A., Bouley, T. A., De Nicola, G., Fontaine, M. A., Huybers, P. J., Mahatante, P. T., Rabemananjara, R., Rakotoarison, N., Ramambason, H. R., Ramihantaniarivo, H., Randriamady, H. J., Randriatsara, H., Ravelomanantsoa, M. A., Razafinimanana, A. K. S., Rigden, A. J., Shumake-Guillemot, J., … Dominici, F. (2025). Climate-smart public health for global health resilience. The Lancet Planetary Health. https://doi.org/10.1016/j.lanplh.2025.101293

    Climate change poses urgent public health risks from rising global temperatures and extreme weather events, including heatwaves, droughts, and floods, which disproportionately affect vulnerable populations. To address the current silos embedded in climate, environmental, and public health monitoring and surveillance systems, climate-smart public health (CSPH) creates an integrated platform for action across these sectors, enabling more rapid and efficient responses to climate-related public health challenges. In this Personal View, we introduce the concept of CSPH, a data-driven framework designed to monitor, assess, and adapt to climate-related health impacts. CSPH incorporates surveillance, risk assessment, early warning systems, and resilient health-care infrastructure to address the evolving challenges of climate change. The framework adopts an iterative, community-centred model that responds to local needs and incorporates feedback from health-care providers and policy makers. CSPH also leverages data science and artificial intelligence to address a wide range of health concerns, including infectious diseases, non-communicable diseases, nutrition, and mental health. We applied this framework in Madagascar, a region highly vulnerable to climate impacts, where poverty, malnutrition, and frequent extreme weather events make climate adaptation particularly urgent. Early data analysis has shown strong climate sensitivity in important diseases such as malaria and diarrhoea, which could enable preparedness efforts to target some regions more efficiently. CSPH provides a pathway to enhance resilience in such settings by improving the capacity of public health systems to withstand and respond to climate-related stressors. © 2025 The Author(s)

  • Woolway, R. I., Zhang, Y., Jennings, E., Zohary, T., Jane, S. F., Jansen, J., Weyhenmeyer, G. A., Long, D., Fleischmann, A., Feng, L., Qin, B., Shi, K., Shi, H., Wang, W., Tong, Y., Zhang, G., Zscheischler, J., Ren, Z., & Jeppesen, E. (2025). Extreme and compound events in lakes. Nature Reviews Earth and Environment. https://doi.org/10.1038/s43017-025-00710-w

    Extreme and compound events disrupt lake ecosystems worldwide, with their frequency, intensity and duration increasing in response to climate change. In this Review we outline evidence of the occurrence, drivers and impact of extreme and compound events in lakes. Univariate extremes, which include lake heatwaves, droughts and floods, underwater dimming episodes and hypoxia, can occur concurrently, sequentially or simultaneously at different locations to form multivariate, temporal or spatial compound events, respectively. The probability of extreme and compound events is increasing owing to climate warming, declining lake water levels in half of lakes globally, and basin-scale anthropogenic stressors, such as nutrient pollution. Most in-lake extreme events are inherently compound in nature owing to tightly coupled physical, chemical and biological underlying processes. The cascading effects of compound events propagate or dissipate through lakes. For example, a heatwave might trigger stratification and oxygen depletion, subsequently leading to fish mortality or the proliferation of harmful algal blooms. Interactions between extremes are increasingly observed and can trigger feedback loops that exacerbate harmful algal blooms and fishery declines, leading to severe ecological and socio-economic consequences. Managing the increasing risk of compound events requires integrated models, coordinated monitoring and proactive adaptation strategies tailored to the vulnerabilities of lake ecosystems. © Springer Nature Limited 2025.

  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 11
  • Page 1 de 11
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-09-20 06 h 52 (UTC)

Explorer

Axes du RIISQ

  • 1 - aléas, vulnérabilités et exposition (131)
  • 2 - enjeux de gestion et de gouvernance (72)
  • 3 - aspects biopsychosociaux (136)
  • 4 - réduction des vulnérabilités (87)
  • 5 - aide à la décision, à l’adaptation et à la résilience (96)

Enjeux majeurs

  • Inégalités et événements extrêmes
  • Prévision, projection et modélisation (53)
  • Risques systémiques (32)

Lieux

  • Canada (63)
  • Québec (province) (30)
  • États-Unis (19)
  • Europe (10)

Secteurs et disciplines

  • Nature et Technologie (167)
  • Société et Culture (114)
  • Santé (79)

Types d'événements extrêmes

  • Inondations et crues (128)
  • Évènements liés au froid (neige, glace) (113)
  • Sécheresses et canicules (31)
  • Feux de forêts (11)

Types d'inondations

  • Fluviales (42)
  • Submersion côtière (10)
  • Par embâcle (7)
  • Pluviales (5)

Type de ressource

  • Article de colloque (2)
  • Article de revue (187)
  • Chapitre de livre (5)
  • Document (1)
  • Prépublication (3)
  • Rapport (4)
  • Thèse (17)

Année de publication

  • Entre 1900 et 1999 (1)
    • Entre 1990 et 1999 (1)
      • 1991 (1)
  • Entre 2000 et 2025 (218)
    • Entre 2000 et 2009 (2)
      • 2002 (1)
      • 2007 (1)
    • Entre 2010 et 2019 (52)
      • 2011 (1)
      • 2012 (3)
      • 2013 (1)
      • 2014 (3)
      • 2015 (6)
      • 2016 (5)
      • 2017 (5)
      • 2018 (13)
      • 2019 (15)
    • Entre 2020 et 2025 (164)
      • 2020 (17)
      • 2021 (19)
      • 2022 (29)
      • 2023 (25)
      • 2024 (27)
      • 2025 (45)
      • 2026 (2)

Langue de la ressource

  • Anglais (141)
  • Chinois (2)
  • Français (14)

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web