Votre recherche
Résultats 60 ressources
-
<p>This study investigates the performance of 35 recent ponds (which are under tendering, under construction, and finished in Erbil City), focusing on their role in flood mitigation across 11 distinct catchment areas. The total storage capacity of these ponds is approximately 9,926,394 m³, significantly enhancing the city's ability to manage stormwater runoff and reduce flood risks. The Watershed Modeling System (WMS), along with the Soil Conservation Service Curve Number (SCS-CN) method, was utilized for hydrological modeling to evaluate runoff behavior and water retention performance. Calculated Retention Capacity Ratio (RCR) values vary from as low as 21 % in the smallest system to 136 % in the Kasnazan catchment, with Chamarga similarly exceeding full capacity at 131 %. These over-capacity networks not only attenuate peak flows but also promote groundwater recharge, improve downstream water quality by trapping sediments and nutrients, and create valuable aquatic and riparian habitats. Our findings demonstrate the multifaceted benefits of high-capacity retention ponds and provide a replicable model for integrating green infrastructure into urban planning to build flood resilience and sustainable water management in rapidly urbanizing regions.</p>
-
This study aims to conduct a grid-scale extreme precipitation risk assessment in Xuanwu District, Nanjing, so as to fill the gaps in existing indicator systems and improve the precision of risk characterization. By integrating physical, social, and environmental indicators, a risk assessment framework was constructed to comprehensively represent the characteristics of extreme precipitation risk. This study applied the entropy weight method to calculate indicator weights, combined with ArcGIS technology and the K-means clustering algorithm, to analyze the spatial distribution characteristics of risk under a 100-year extreme precipitation scenario and to identify key influencing indicators across different risk levels. The results showed that extreme precipitation risk levels in Xuanwu District exhibited significant spatial heterogeneity, with an overall distribution pattern of low risk in the central area and high risk in the surrounding areas. The influence mechanisms of key indicators showed tiered response characteristics: the low-risk areas were mainly controlled by the submerged areas of urban and rural, industrial and mining, and residential lands, water body area, soil erosion level, and normalized difference vegetation index (NDVI). The medium-risk areas were influenced by the submerged areas of urban and rural, industrial and mining, residential lands, the submerged areas of forest land, emergency service response time to disaster-affected areas, soil erosion level, and NDVI. The high-risk areas were jointly dominated by the submerged areas of urban and rural, industrial and mining, residential lands, the submerged areas of forest land, and NDVI. The extremely high-risk areas were driven by three factors—the submerged areas of forest land, emergency service response time to disaster-affected areas, and the proportion of the largest patch to the landscape area. This study improves the indicator system for extreme precipitation risk assessment and clarifies the tiered response patterns of risk-driving indicators, providing a scientific basis for developing differentiated flood control strategies in Xuanwu District while offering important theoretical support for improving regional flood disaster resilience. © 2025 Editorial Office of Journal of Disaster Prevention and Mitigation Engineering. All rights reserved.
-
Rapid urban expansion has significantly altered land use patterns, resulting in a decrease in pervious surface areas and a disruption of hydrologic connectivity between surface water and groundwater systems. Combined with inadequate drainage systems and poorly managed runoff, these changes have intensified urban flooding, leading to fatalities and significant infrastructure damage in many rapidly growing and climate-vulnerable urban areas around the world. This study presents an integrated economic-hydrologic model to assess the effectiveness of Low Impact Development (LID) measures—specifically permeable pavement, infiltration trenches, bio-retention cells, and rain barrels—in mitigating flood damage in the Bronx river watershed, NYC. The Storm Water Management Model (SWMM) was employed to simulate flood events and assess the effectiveness of various LIDs, applied individually and in combination, in reducing peak discharge. Flood inundation maps generated using HEC-GeoRAS were integrated with the HAZUS damage estimation model to quantify potential flood damages. A benefit-to-cost (BC) ratio was then calculated by comparing the monetary savings from reduced flood damage against the implementation costs of LID measures. Results indicate that the combined LID scenario offers the highest peak flow reduction, with permeable pavement alone reducing flow by 57%, outperforming other techniques under equal area coverage. Among all individual options, permeable pavement yields the highest cumulative BC ratio under all scenarios (4.6), whereas rain barrels are the least effective (2.6). The proposed evaluation framework highlights the importance of economic efficiency in flood mitigation planning and provides a structured foundation for informed decision-making to enhance urban resilience through LID implementation. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
-
Urban soil sealing and anthropogenic activities, combined with the increasing intensity of rainfall due to climate change, is a threat to urban environments, exacerbating flood risks. To assess these challenges, Low Impact Development strategies, based on Nature-based solutions, are a key solution to mitigate urban flooding. To enhance the hydrological performance of LID infrastructure, and to meet the guideline requirements related to emptying time, specifically in low hydraulic conductivity soils, earthworm activity and vegetation dynamics can play a major role. The ETAGEP experimental site was built to study to address those challenges. 12 swales (10 m2 infiltration area for each swale) were monitored to evaluate the impact of earthworm activity (A. caliginosa and L. terrestris) and vegetation dynamics (Rye Grass, Petasites hybridus and Salix alba) to enhance the hydrological performance. The infiltration rate of the swales evolved in a differentiated manner, with an increase of 16.1 % to 310.8 % and draining times decrease of 13.9 % to 75.7, depending on initial soil hydro-physical properties and the impervious areas of the catchment which influence runoff volumes. The simulations on SWMM software showed similar results, with an enhancement of the hydraulic conductivity of N6 swales (60 m2 total catchment area) increasing from 18 mm h−1 to 25 mm h−1, and a reduction of drawdown time by 24.4 % (N6) and 20.8 % (N11–110 m2 active surface). A simulated storm event of 44.8 mm resulted in an overflow of 2.12 m3 for the N11 swale configuration, while no overflow was observed for N6. These results highlight the ecosystem services of earthworms for a sustainable stormwater management in urban environments, enhancing the hydrological performance of LID infrastructures and reducing therefore flood risks and limiting pressure on drainage network. © 2025 The Author(s)
-
Urban flooding threatens Indian cities and is made worse by rapid urbanization, climate change and poor infrastructure. Severe flooding occurred in cities such as Mumbai, Chennai and Ahmedabad. This has caused huge economic losses and displacement. This study addresses the limitations of traditional flood forecasting methods. It has to contend with the complex dynamics of urban flooding. We offer a deep learning approach which uses the network Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to improve flood risk prediction. Our CNN-LSTM model combines spatial data (water table, topography) and temporal data (historical model) to classify flood risk as low or high. This method includes collecting data pre-processing (MinMaxScaler, LabelEncoder) Modeling, Training and Evaluation. The results demonstrate the accuracy of flood risk predictions and provide insights into flexible strategies for urban flood management. This research highlights the role of data-driven approaches in improving urban planning to reduce flood risk in high-risk areas. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
-
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. © 2025 by the authors.
-
Water risk management has been adversely affected by climate variations, including recent climate change. Climate variations have highly impacted the hydrological cycles in the atmosphere and biosphere, and their impact can be defined with the teleconnection between climate signals and hydrological variables. Water managers should practice future risk management to mitigate risks, including the impact of teleconnection, and stochastically simulated scenarios can be employed as an effective tool to take advantage of water management preparation. A stochastic simulation model for hydrological variables teleconnected with climate signals is very useful for water managers. Therefore, the objective of the current study was to develop a novel stochastic simulation model for the simulation of synthetic series teleconnected with climate signals. By jointly decomposing the hydrological variables and a climate signal with bivariate empirical mode decomposition (BEMD), the bivariate nonstationary oscillation resampling (B-NSOR) model was applied to the significant components. The remaining components were simulated with the newly developed method of climate signal-led K-nearest neighbor-based local linear regression (CKLR). This entire approach is referred to as the climate signal-led hydrologic stochastic simulation (CSHS) model. The key statistics were estimated from the 200 simulated series and compared with the observed data, and the results showed that the CSHS model could reproduce the key statistics including extremes while the SML model showed slight underestimation in the skewness and maximum values. Additionally, the observed long-term variability of hydrological variables was reproduced well with the CSHS model by analyzing drought statistics. Moreover, the Hurst coefficient with slightly higher than 0.8 was fairly preserved by the CSHS model while the SML model is underestimated as 0.75. The overall results demonstrate that the proposed CSHS model outperformed the existing shifting mean level (SML) model, which has been used to simulate hydroclimatological variables. Future projections until 2100 were obtained with the CSHS model. The overall results indicated that the proposed CSHS model could represent a reasonable alternative to teleconnect climate signals with hydrological variables.
-
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).
-
Despite investments in disaster resilience, flooding continues to disrupt healthcare systems, both by limiting access and through failures in the surrounding transportation network. Existing models for mitigation planning often overlook critical dynamics, such as traffic rerouting, particularly at the national scales necessary for effective planning. Here we present a scalable method to identify hospitals at risk of emergency response delays and service disruptions caused by flood-induced traffic impacts. Our approach integrates a regional flood model with a gravity-based traffic model to simulate traffic flow from open-source road data. Our findings reveal hidden risks for hospitals located far from flood zones, showing how flood-related road disruptions and traffic rerouting can reduce access to critical healthcare services. In particular, we found 75 (of 2,475) hospitals at risk of patient surges beyond their regular capacity, driven solely by flood-related traffic disruptions. Of these, a third are more than 10 km from the nearest inundation, suggesting these facilities may be unaware and thus under-prepared — risks that have, until now, remained hidden from assessments. © The Author(s) 2025.
-
Artificial flooding of rainwater is most common in urban areas due to various reasons, such as improper drainage systems, obstruction of natural drainage by building constructions, and encroachment of stormwater nallahs. Flash floods lead to significant losses, disrupt transportation, and cause inconvenience to the public. Udupi, characterized by its porous lateritic strata, undulating topography, and proximity to the sea, experiences artificial flooding during the peak monsoon season in its low-lying areas, primarily due to the overflow of the Indrani River, which is also a potential water resource for Udupi, Karnataka. Currently, the river faces significant challenges due to increasing anthropogenic activities. Revitalizing the Indrani River offers numerous benefits, including its potential use as a drinking water source during periods of water scarcity. This study aims to propose flood and stormwater management measures for the river catchment and to evaluate selected water quality parameters (pH, dissolved oxygen, and conductivity) at fifteen strategic locations along the river course. Higher conductivity observed at downstream stations is attributed to sewage discharge from urban settlements and a sewage treatment plant. The study suggests short-term measures such as targeted clean-up operations and stricter enforcement of pollution control regulations. Additionally, it recommends long-term strategies, including the development of a comprehensive river basin management plan, community engagement initiatives, and improvements to wastewater treatment infrastructure. To maintain the health of the Indrani River, this research emphasizes the importance of continuous monitoring and the implementation of integrated management practices. © The Author(s) 2025.
-
Floods are one of the most prevalent natural disasters, and advancements in geospatial technologies have revolutionized flood management, particularly the use of Digital Elevation Models (DEMs) in hydrological modelling. However, a comprehensive analysis DEMs integration in flood risk management is lacking. This study addresses this gap through a thorough Systematic Literature Review focusing on the combined application of DEMs and hydrological models in flood mitigation and risk management. The SLR scrutinized 21 articles, revealing eight key themes: DEM data sources and characteristics, DEM integration with hydrological models, flood hazard mapping applications, terrain impact assessment, model performance evaluation, machine learning in flood management, ecosystem services and resilience, and policy and governance implications. These findings emphasize the importance of precise DEM selection and correction for successful flood modelling, highlighting Advanced Land Observing Satellite as the most effective freely available DEM for use with the HEC-RAS unsteady flood model. This integration significantly enhances flood mitigation efforts and strengthens management strategies. Finally, this study underscores the pivotal role of DEM integration in crafting effective flood mitigation strategies, especially in addressing climate change challenges and bolstering community and ecosystem resilience. © 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
-
The Internet of Things (IoT) has become increasingly important in flood risk management (FRM). This trend emerged as climate change intensified flooding events, driving the urgent need for localised early warning systems. Previous studies demonstrated the effectiveness of IoT sensors in forecasting potential floods and supporting flood modelling. However, comprehensive research addressing all FRM stages - prevention, mitigation, preparedness, response, and recovery - has remained limited. To address this research gap, this study identified five key IoT sensor categories: water quantity, water quality, rainfall intensity, weather conditions, and catchment characteristics. The roles, objectives, and applications of these sensors across FRM stages were then investigated. Results showed that water quantity sensors were the most common, accounting for 48% of documented IoT applications. Weather condition sensors (27%) and rainfall intensity sensors (21%) were also widely used, especially after 2021. Additionally, IoT-based FRM had three primary Objectives flood modelling (61%), alerting (25%), and visualisation (14%). Most cases (42%) focused on the preparedness stage, while prevention (8%) and recovery (5%) were underrepresented, highlighting clear gaps in existing research. The review also revealed several overlooked sensor types, including groundwater level, biochemical oxygen demand, and nitrite sensors. Despite their potential to enhance quality-based flood modelling, these sensors were rarely utilised. Consequently, the study emphasised the need for broader integration of IoT sensors throughout all FRM stages. Such integration could support more resilient, data-driven flood management strategies, particularly in regions where IoT deployment has remained limited. © The Author(s), under exclusive licence to Springer Nature B.V. 2025.
-
Nature-based solutions (NbS) are increasingly recognized as strategic alternatives and complements to grey infrastructure for addressing water-related challenges in the context of climate change, urbanization, and biodiversity decline. This article presents a critical, theory-informed review of the state of NbS implementation in European water management, drawing on a structured synthesis of empirical evidence from regional case studies and policy frameworks. The analysis found that while NbS are effective in reducing surface runoff, mitigating floods, and improving water quality under low- to moderate-intensity events, their performance remains uncertain under extreme climate scenarios. Key gaps identified include the lack of long-term monitoring data, limited assessment of NbS under future climate conditions, and weak integration into mainstream planning and financing systems. Existing evaluation frameworks are critiqued for treating NbS as static interventions, overlooking their ecological dynamics and temporal variability. In response, a dynamic, climate-resilient assessment model is proposed—grounded in systems thinking, backcasting, and participatory scenario planning—to evaluate NbS adaptively. Emerging innovations, such as hybrid green–grey infrastructure, adaptive governance models, and novel financing mechanisms, are highlighted as key enablers for scaling NbS. The article contributes to the scientific literature by bridging theoretical and empirical insights, offering region-specific findings and recommendations based on a comparative analysis across diverse European contexts. These findings provide conceptual and methodological tools to better design, evaluate, and scale NbS for transformative, equitable, and climate-resilient water governance.
-
ABSTRACT Waterlogging is a critical abiotic stress factor severely affecting maize, one of the World's most widely cultivated cereal crops. Globally, maize is a crucial food crop, grown in diverse agro‐climatic zones, from subtropical to temperate climates. Waterlogging, resulting from flooding, intense rainfall and inefficient drainage systems, continues to be a major abiotic stress factor influencing crop productivity globally. Prolonged exposure to excess soil moisture leads to oxygen depletion in the root zone, resulting in restricted aerobic respiration, impaired nutrient uptake and disruption of physiological processes. This review aims to provide a comprehensive overview of the morphological, physiological and biochemical changes maize undergoes in response to waterlogging stress. Key aspects such as root system adaptation, reduction in photosynthetic efficiency, accumulation of reactive oxygen species (ROS) and hormonal imbalances are systematically examined. Furthermore, we delve into the metabolic shifts that enable maize to survive under anaerobic conditions, including alterations in energy metabolism, carbohydrate partitioning, and activating antioxidant defence mechanisms. The role of key signalling molecules such as ethylene is explored, highlighting their involvement in regulating stress responses. Additionally, the review discusses agronomic and genetic approaches for improving waterlogging tolerance in maize, including the development of stress‐resilient cultivars through breeding and biotechnological interventions. By synthesising recent advances in understanding maize's response to waterlogging, this paper identifies gaps and proposes future research directions, focusing on the integration of molecular and field‐based strategies. The insights from this review are crucial for developing sustainable agricultural practices aimed at mitigating the adverse impacts of waterlogging on maize productivity, particularly in flood‐prone areas. Breeding for waterlogging resilience integrates the creation of robust varieties, plant morphology optimisation, and utilisation of tolerant secondary traits through combined conventional and biotechnological breeding strategies.
-
Flooding presents a significant challenge in the Lagos metropolis, driven by rapid urbanization, poor drainage infrastructure, and climate change. This study evaluates flood resilience strategies in Lagos, analyzing their effectiveness in mitigating flood risks and their alignment with the 2030 Agenda. The research utilizes the PICO (Population, Intervention, Control, and Outcomes) framework to refine research questions and follows PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines for study selection, search strategies, and data extraction. A thorough search across databases such as Google Scholar, SCOPUS, and government data repositories was conducted to ensure the inclusion of relevant studies while minimizing selection bias. The study emphasizes the severe impacts of flooding, referencing the 2022–2023 flood event which resulted in USD 262,500 damages and displaced 8000 residents in Lagos State. Current flood resilience strategies are inadequate to meet the Sustainable Development Goals (SDGs) due to insufficient urban flood infrastructure, poor waste disposal practices, and worsening climatic conditions. The livelihoods, income, health, and overall survival of vulnerable communities are at significant risk. Key gaps identified include the weak enforcement of urban planning regulations, limited community engagement, ineffective early warning systems, and poor intervention initiatives. This study suggests a multi-stakeholder approach that enhances both structural and non-structural flood resilience. Improving drainage systems, promoting sustainable waste management, improving climate adaptation policies, and fostering community-based flood mitigation strategies are crucial for achieving long-term urban resilience. These findings offer valuable insights for policymakers, urban planners, and climate resilience advocates working toward the Sustainable Development Agenda in Lagos metropolis. Copyright © 2025 Orimoogunje and Aniramu.
-
Extreme weather events, such as heat waves, heavy rainfall and droughts, have become more frequent and intense in Brazil. According to climate change scenarios, this trend, which has a negative impact on people’s health and living conditions, will continue. Here, we analysed indicators for extreme weather events resulting from climate change, projected for the 21st century, alongside socio-demographic indicators for Brazilian municipalities, in an attempt to identify populations exposed to the risks of the climate crisis. We calculated the values of indicators for extreme air temperature and precipitation events, based on NEX-GDDP-CMIP6 data, for a reference period and for the future, as well as socio-demographic indicators based on recent census data. Using Spearman’s coefficient, we then calculated anomaly indicators for the future time intervals and analysed correlations with the socio-demographic indicators. Our results indicate a reduction in cold days and an increase in hot days and heat waves in both scenarios (SSP2-4.5 and SSP5-8.5), with the most changes occurring in the highest emission scenario. The extreme precipitation indicators suggest both an increase and a reduction in intense precipitation and droughts in a number of the country’s regions. The projected changes are more intense in the highest emission scenario, and in the North and Northeast regions. We noted a trend for greatest occurrence of extreme events in locations with a higher proportion of Black, Parda/Brown, Indigenous and Quilombola populations, and the socially vulnerable. We recommend that policies to adapt and mitigate the impacts of climate change focus on reducing inequalities and promoting climate justice. © The Author(s) 2025.
-
Purpose of the Review: Climate change is intensifying the pressures on aquatic ecosystems by altering the dynamics of contaminants, with cascading effects on ecological and human health. This review synthesizes recent evidence on how rising temperatures, altered precipitation patterns, and extreme weather events influence chemical and microbial contaminant dynamics in aquatic environments. Recent Findings: Key findings reveal that elevated temperatures enhance phosphorus pollution and algal blooms, increase heavy metal release from sediments, and promote the mobilization of organic pollutants. Concurrently, climate change exacerbates microbial contamination by facilitating the spread of waterborne microbial contaminants, especially posing more pressure to antimicrobial resistance-related contaminants through temperature-driven horizontal gene transfer and extreme precipitation events. Complex interactions between chemical and microbial contaminants like heavy metals co-selecting for antibiotic resistance further amplify risks. The compounded effects of climate change and contaminants threaten water quality, ecosystem resilience, and public health, particularly through increased toxicant exposure via seafood and waterborne disease outbreaks. Despite growing recognition of these interactions, critical gaps remain in understanding their synergistic mechanisms, especially in data-scarce regions. Summary: This review highlights the urgent need for integrated monitoring, predictive modeling, and adaptive policies under a One Health framework to mitigate the multifaceted impacts of climate-driven contamination. Future research should prioritize real-world assessments of temperature effects, urban overflow dynamics during extreme weather, and the socio-behavioral dimensions of contaminant spread to inform effective mitigation strategies. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
-
Les événements météorologiques extrêmes (EME) et les désastres qu’ils entrainent provoquent des conséquences psychosociales qui sont modulées en fonction de différents facteurs sociaux. On constate aussi que les récits médiatiques et culturels qui circulent au sujet des EME ne sont pas représentatifs de l’ensemble des expériences de personnes sinistrées : celles qui en subissent les conséquences les plus sévères tendent aussi à être celles qu’on « entend » le moins dans l’espace public. Ces personnes sont ainsi susceptibles de vivre de l’injustice épistémique, ce qui a des effets délétères sur le soutien qu’elles reçoivent. Face à ces constats s’impose la nécessité de mieux comprendre la diversité des expériences d’EME et d’explorer des stratégies pour soutenir l’ensemble des personnes sinistrées dans leur rétablissement psychosocial. Cet article soutient que la recherche narrative peut contribuer à répondre à ces objectifs. En dépeignant des réalités multiples, la recherche narrative centrée sur les récits de personnes sinistrées présente aussi un intérêt significatif pour l’amélioration des pratiques d’intervention en contexte de désastre. , Extreme weather events (EWE) and their resulting disasters cause psychosocial consequences that are moderated by different social factors. Media and cultural accounts of EWEs do not represent the full range of disaster survivor experiences, that is, those who experienced the most severe consequences also tend to be those least “heard” in the public arena. These people are therefore most likely to experience forms of epistemic injustice that negatively impact the support offered to cope with disaster. Considering these findings, there is a need to better understand the diversity of EWE experiences and explore strategies for supporting all disaster survivors in their psychosocial recovery. This article argues that narrative research can help meet these needs. By portraying the multiple realities of people affected by EWEs, narrative research focusing on the stories of disaster survivors is also of significant interest for improving intervention practices in this context.
-
ABSTRACT Urbanization is leading to more frequent flooding as cities have more impervious surfaces and runoff exceeds the capacity of combined sewer systems. In heavy rainfall, contaminated excess water is discharged into the natural environment, damaging ecosystems and threatening drinking water sources. To address these challenges aggravated by climate change, urban blue-green water management systems, such as bioretention cells, are increasingly being adopted. Bioretention cells use substrate and plants adapted to the climate to manage rainwater. They form shallow depressions, allowing infiltration, storage, and gradual evacuation of runoff. In 2018, the City of Trois-Rivières (Québec, Canada) installed 54 bioretention cells along a residential street, several of which were equipped with access points to monitor performance. Groundwater quality was monitored through the installation of piezometers to detect potential contamination. This large-scale project aimed to improve stormwater quality and reduce sewer flows. The studied bioretention cells reduced the flow and generally improved water quality entering the sewer system, as well as the quality of stormwater, with some exceptions. Higher outflow concentrations were observed for contaminants such as manganese and nitrate. The results of this initiative provide useful recommendations for similar projects for urban climate change adaptation.
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.