Votre recherche
Résultats 135 ressources
-
Flooding is the most frequent natural disaster in the Yangtze River Basin (YRB), causing significant socio-economic damages. In recent decades, abundant wetland resources in the YRB have experienced substantial changes and played a significant role in strengthening the hydrological resilience to flood risks. However, wetland-related approaches remain underdeveloped for mitigating flood risks in the YRB due to the lack of considering long-term wetland effects in the flood risk assessment. Therefore, this study develops an wetland-related GIS-based spatial multi-index flood risk assessment model by incorporating the effects of wetland variations, to investigate the long-term implications of wetland variations on flood risks, to identify dominant flood risk indicators under wetland effects, and to provide wetland-related flood risk management suggestions. These findings indicate that wetlands in the Taihu Lake Basin, Wanjiang Plain, Poyang Lake Basin, and Dongting and Honghu Lake Basin could enhance flood control capacity and reduce flood risks in most years between 1985 and 2021 except years with extreme flood disasters. Wetlands in the Sichuan Basin have aggravated but limited impacts on flood risks. Precipitation in the Taihu Lake Basin and Poyang Lake Basin, runoff and vegetation cover in the Wanjiang Plain, GDP in the Taihu Lake Basin, population density in the Taihu lake Basin, Dongting and Honghu Lake Basin, and the Sichuan Basin are dominant flood risk indicators under wetland effects. Reasonably managing wetlands, maximizing stormwater storage capacity, increasing vegetation coverage in urbanized and precipitated regions are feasible suggestions for developing wetland-related flood resilience strategies in the YRB. © 2025 The Authors
-
This review examines the role of vegetation as a nature-based solution (NBS) for sustainable river corridor management, integrating a wide range of interdisciplinary domains. It synthesizes studies addressing global challenges in river systems, the worldwide adoption of vegetation-based solutions and location-specific field observations from major Indian rivers such as the Brahmaputra and Ganga. This paper also reviews flume-scale experiments on vegetation–flow interactions and explores the biomechanical properties of vegetation, such as root reinforcement that contribute to riverbank stability. In addition, it discusses the selection of suitable species based on specific climatic regions, as reported in the literature. Building on this interdisciplinary understanding, this review highlights the vital role of vegetation in mitigating bank erosion, regulating sediment transport, attenuating floods and enhancing the overall health and resilience of riverine ecosystems and communities. It proposes an integrated framework that combines vegetation with biodegradable materials such as bamboo fencing and geo-bags and conventional engineering measures to address high-flow conditions and ensure long-term riverbank stability. Additionally, a flume-scale physical model study was conducted to investigate near-bank hydrodynamics in the presence of a series of three spurs and a combination of rigid and flexible vegetation. The results indicate that vegetation significantly reduces streamwise velocity near the bank, achieving performance comparable to that of the spur arrangement. This study identifies key challenges, including appropriate species selection, long-term maintenance of vegetation-based solutions and the need for adaptive management strategies. It further emphasizes the importance of stakeholder engagement for successful and sustainable implementation. © 2025 John Wiley & Sons Ltd.
-
Floods are one of the most prevalent natural disasters, and advancements in geospatial technologies have revolutionized flood management, particularly the use of Digital Elevation Models (DEMs) in hydrological modelling. However, a comprehensive analysis DEMs integration in flood risk management is lacking. This study addresses this gap through a thorough Systematic Literature Review focusing on the combined application of DEMs and hydrological models in flood mitigation and risk management. The SLR scrutinized 21 articles, revealing eight key themes: DEM data sources and characteristics, DEM integration with hydrological models, flood hazard mapping applications, terrain impact assessment, model performance evaluation, machine learning in flood management, ecosystem services and resilience, and policy and governance implications. These findings emphasize the importance of precise DEM selection and correction for successful flood modelling, highlighting Advanced Land Observing Satellite as the most effective freely available DEM for use with the HEC-RAS unsteady flood model. This integration significantly enhances flood mitigation efforts and strengthens management strategies. Finally, this study underscores the pivotal role of DEM integration in crafting effective flood mitigation strategies, especially in addressing climate change challenges and bolstering community and ecosystem resilience. © 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
-
The Internet of Things (IoT) has become increasingly important in flood risk management (FRM). This trend emerged as climate change intensified flooding events, driving the urgent need for localised early warning systems. Previous studies demonstrated the effectiveness of IoT sensors in forecasting potential floods and supporting flood modelling. However, comprehensive research addressing all FRM stages - prevention, mitigation, preparedness, response, and recovery - has remained limited. To address this research gap, this study identified five key IoT sensor categories: water quantity, water quality, rainfall intensity, weather conditions, and catchment characteristics. The roles, objectives, and applications of these sensors across FRM stages were then investigated. Results showed that water quantity sensors were the most common, accounting for 48% of documented IoT applications. Weather condition sensors (27%) and rainfall intensity sensors (21%) were also widely used, especially after 2021. Additionally, IoT-based FRM had three primary Objectives flood modelling (61%), alerting (25%), and visualisation (14%). Most cases (42%) focused on the preparedness stage, while prevention (8%) and recovery (5%) were underrepresented, highlighting clear gaps in existing research. The review also revealed several overlooked sensor types, including groundwater level, biochemical oxygen demand, and nitrite sensors. Despite their potential to enhance quality-based flood modelling, these sensors were rarely utilised. Consequently, the study emphasised the need for broader integration of IoT sensors throughout all FRM stages. Such integration could support more resilient, data-driven flood management strategies, particularly in regions where IoT deployment has remained limited. © The Author(s), under exclusive licence to Springer Nature B.V. 2025.
-
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster risk assessment model through systematic analysis of four key factors—hazard (H), exposure (E), susceptibility/sensitivity (S), and disaster prevention capabilities (C)—and establishes an evaluation index system. Using the Analytic Hierarchy Process (AHP), we determined indicator weights and quantified flood risk via the following formula R = H × E × V × C. After we applied this model to 16 towns in coastal Zhejiang Province, the results reveal three distinct risk tiers: low (R < 0.04), medium (0.04 ≤ R ≤ 0.1), and high (R > 0.1). High-risk areas (e.g., Longxi and Shitang towns) are primarily constrained by natural hazards and socioeconomic vulnerability, while low-risk towns benefit from a robust disaster mitigation capacity. Risk typology analysis further classifies towns into natural, social–structural, capacity-driven, or mixed profiles, providing granular insights for targeted flood management. The spatial risk distribution offers a scientific basis for optimizing flood control planning and resource allocation in the district. © 2025 by the authors.
-
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. © 2025 by the authors.
-
Natech events, involving multi-hazard coupling and cascading effects, pose serious threats to coal mine safety. This paper addresses flood-induced Natech scenarios in coal mining and introduces a two-stage cascading analysis framework based on hazard systems theory. A tri-layered network—comprising natural hazards, exposed elements, and secondary hazards—models hazard propagation. In Stage 1, an improved adjacency information entropy algorithm with multi-hazard coupling coefficients identifies critical exposed elements. In Stage 2, Dijkstra’s algorithm extracts key risk transmission paths. A dual-dimensional classification method, based on entropy and transmission risk, is then applied to prioritize emergency responses. This method integrates the criticality of exposed elements with the risk levels associated with secondary disaster propagation paths. Case studies validate the framework, revealing: (1) Hierarchical heterogeneity in the network, with surface facilities and surrounding hydrological systems as central hubs; shaft and tunnel systems and surrounding geological systems are significantly affected by propagation from these core nodes, exhibiting marked instability. (2) Strong risk polarization in secondary hazard propagation, with core-node-originated paths being more efficient and urgent. (3) The entropy-risk classification enables targeted hazard control, improving efficiency. The study proposes chain-breaking strategies for precise, hierarchical, and timely emergency management, enhancing coal mine resilience to flood-induced Natech events. © 2025 by the authors.
-
Sediment management poses a significant challenge in hydraulic systems, affecting the water flow efficiency, structural durability, and operational reliability. The operation of the intake gate greatly influences the sediment characteristics, including the transport, deposition, and distribution patterns. This study investigates how different intake gate openings impact the sediment behavior in hydraulic systems to improve the operational strategies and reduce sediment-related problems. An experimental method was employed using a scaled physical model in controlled laboratory conditions, where various intake gate configurations were tested at consistent flow rates to simulate real-world hydraulic structures. Sediment samples were analyzed for grain size distribution, deposition patterns, and transport process dynamics. Data were gathered through direct measurements and video recordings, and then processed using sediment analysis software. The results showed that larger intake openings promote the sediment transport downstream and reduce the localized deposition near the intake. Conversely, smaller openings lead to sediment accumulation at the gate, increasing the risk of blockage and operational inefficiencies. Over time, these patterns evolve, potentially causing long-term sediment accumulation or channel scouring depending on the frequency and the way the gate is adjusted. Based on these findings, the study proposes adaptive, long-term sediment management approaches, including periodic gate operation adjustments, sediment flushing protocols, and comprehensive monitoring systems. These strategies aim to balance the sediment transport and deposition over extended operational periods, enhancing the performance and sustainability of hydraulic infrastructure, such as irrigation channels, reservoirs, and hydropower plants. © 2025, Dr D. Pylarinos. All rights reserved.
-
The population growth and limited land availability for housing have forced some communities to reside in disaster-prone areas, particularly those vulnerable to flooding. This study, presents a spatial-based assessment that integrates physical and regulatory criteria to identify safe and appropriate residential zones. Using spatial analysis through map overlays, scoring, and weighting techniques, the research evaluates seven key physical variables: land slope, drainage, erosion, land use, road accessibility, access to essential facilities, and flood hazard vulnerability. The novelty of this study lies in the integration of flood mitigation into residential suitability mapping that is aligned with the Regional Spatial Plan (RTRW), offering a comprehensive and policy-relevant framework. The findings reveal that 20.85% of the study area is suitable for housing, 61.83% is conditionally suitable, and 17.32% is unsuitable. Based on the land availability and RTRW compliance, residential land is categorized into Available Location I (47 hectares) and Available Location II (423 hectares). These results provide not only a technical basis for guiding safe settlement, but also a strategic reference for planners and policymakers. The study proposes that future research incorporates socio-economic variables and real-time flood data for dynamic risk assessment. Furthermore, stakeholder engagement and community-based mapping are proposed to enhance the local resilience and ensure participatory planning. Ultimately, this research contributes to sustainable urban development by supporting informed decision-making for safer, flood-resilient settlements. © by the authors.
-
Flood intensity has significantly increased globally, which poses significant challenges for the environment and urban areas. This research aimed to evaluate the performance of different flood hazard assessment approaches to identify flood risk areas in Erbil city, Kurdistan region of Iraq. The analytical hierarchy process and the new ArcGIS pro flood simulation tool were compared to identify flood-risk areas and assess their performance based on historical flood events. Multiple factors such as rainfall, aspect, topographic wetness index, elevation, flow accumulation, lithology, soil data, normalized difference vegetation index, normalized difference built-up index, land use land cover, slope, stream power index, drainage density, evapotranspiration, infiltration rates, and distance to roads were considered to identify flood risk areas. Using the Analytical Hierarchy Process, areas spanning over 35 km² (3.9%) and 74 km² (27%) of Erbil city were identified as very high and high flood susceptible, respectively. However, the results of AFS indicated that an area of 66.3 km² (7.3%) of Erbil city will be inundated during rainfall intensity of 60 mm/day. The receiver operating characteristic area under the curve assessments showed the accuracy of AFS to be 95.3% and that of the Analytical Hierarchy Process to be 92.2%. The comparison analysis emphasized the effectiveness of ArcGIS Pro flood simulation in terms of accurate flood inundation assessments. This research provides significant insights into suitable approaches to flood hazard assessment by considering different scales and data availability, helping policymakers and urban planners understand floods better and implement appropriate mitigation strategies accordingly. © 2025, Union of Iraqi Geologists. All rights reserved.
-
Nature-based solutions (NbS) are increasingly recognized as strategic alternatives and complements to grey infrastructure for addressing water-related challenges in the context of climate change, urbanization, and biodiversity decline. This article presents a critical, theory-informed review of the state of NbS implementation in European water management, drawing on a structured synthesis of empirical evidence from regional case studies and policy frameworks. The analysis found that while NbS are effective in reducing surface runoff, mitigating floods, and improving water quality under low- to moderate-intensity events, their performance remains uncertain under extreme climate scenarios. Key gaps identified include the lack of long-term monitoring data, limited assessment of NbS under future climate conditions, and weak integration into mainstream planning and financing systems. Existing evaluation frameworks are critiqued for treating NbS as static interventions, overlooking their ecological dynamics and temporal variability. In response, a dynamic, climate-resilient assessment model is proposed—grounded in systems thinking, backcasting, and participatory scenario planning—to evaluate NbS adaptively. Emerging innovations, such as hybrid green–grey infrastructure, adaptive governance models, and novel financing mechanisms, are highlighted as key enablers for scaling NbS. The article contributes to the scientific literature by bridging theoretical and empirical insights, offering region-specific findings and recommendations based on a comparative analysis across diverse European contexts. These findings provide conceptual and methodological tools to better design, evaluate, and scale NbS for transformative, equitable, and climate-resilient water governance.
-
ABSTRACT Waterlogging is a critical abiotic stress factor severely affecting maize, one of the World's most widely cultivated cereal crops. Globally, maize is a crucial food crop, grown in diverse agro‐climatic zones, from subtropical to temperate climates. Waterlogging, resulting from flooding, intense rainfall and inefficient drainage systems, continues to be a major abiotic stress factor influencing crop productivity globally. Prolonged exposure to excess soil moisture leads to oxygen depletion in the root zone, resulting in restricted aerobic respiration, impaired nutrient uptake and disruption of physiological processes. This review aims to provide a comprehensive overview of the morphological, physiological and biochemical changes maize undergoes in response to waterlogging stress. Key aspects such as root system adaptation, reduction in photosynthetic efficiency, accumulation of reactive oxygen species (ROS) and hormonal imbalances are systematically examined. Furthermore, we delve into the metabolic shifts that enable maize to survive under anaerobic conditions, including alterations in energy metabolism, carbohydrate partitioning, and activating antioxidant defence mechanisms. The role of key signalling molecules such as ethylene is explored, highlighting their involvement in regulating stress responses. Additionally, the review discusses agronomic and genetic approaches for improving waterlogging tolerance in maize, including the development of stress‐resilient cultivars through breeding and biotechnological interventions. By synthesising recent advances in understanding maize's response to waterlogging, this paper identifies gaps and proposes future research directions, focusing on the integration of molecular and field‐based strategies. The insights from this review are crucial for developing sustainable agricultural practices aimed at mitigating the adverse impacts of waterlogging on maize productivity, particularly in flood‐prone areas. Breeding for waterlogging resilience integrates the creation of robust varieties, plant morphology optimisation, and utilisation of tolerant secondary traits through combined conventional and biotechnological breeding strategies.
-
ABSTRACT Natural flood management strategies (NFMs) encompass a variety of measures implemented across catchments to mitigate flood risks while providing multiple benefits. In recent years, NFMs have gained increasing attention from researchers and policymakers. However, despite the growing body of research, there remains a lack of a critical review that quantitatively synthesises the reported performance of different NFMs by analysing their effects on key hydrological parameters. To address this gap, we conducted a systematic review of NFMs based on 145 peer‐reviewed papers covering 216 case studies across 37 countries, following the preferred reporting items for systematic reviews and meta‐analyses (PRISMA) guidelines. Our analysis moves from a descriptive overview of the evidence base to a novel, quantitative investigation of three critical themes: the characteristics of studied NFM schemes, the methodologies used for their assessment, and their quantitative hydrological performance and its influencing factors. Results indicate that 31% of the studies identified flood peak reduction as the most commonly targeted hydrological objective. A significant positive correlation was found between intervention diversity and intensity (Spearman's ρ = 0.53). Furthermore, our methodological analysis reveals a critical trade‐off in the literature, with empirical monitoring typically used in small catchments over shorter durations, while modelling is used to assess a greater diversity of interventions at larger scales, with truly combined approaches being notably rare (11%). Notably, river and floodplain management (RFM) demonstrated higher effectiveness, achieving an average flood peak reduction of 30%, particularly in larger catchments. Bearing the often multi‐faceted aims of NFMs in mind, this paper provides key suggestions for future research.
-
The flood disasters are prevalent in the Ganga–Brahmaputra (GB) basin with recurrent occurrences and severe impacts across the major watersheds. The present study analyses the vulnerability of 44 watersheds to flood inundation and its impact on cropland, urban areas, and population. The Sentinel-1 dataset was utilised to analyse flood extent and frequency from 2015 to 2022, enabling the identification of flood-prone watersheds in the Ganga–Brahmaputra basin. The analysis revealed that 7 watersheds in the Ganga basin and 12 watersheds in the Brahmaputra basin are particularly vulnerable to flooding. The flood hazard analysis was performed using fuzzy-AHP (Analytic Hierarchy Process), focusing on six parameters, including topographic wetness index (TWI), elevation, precipitation, drainage density, distance from river, and NDVI for the selected 19 watersheds. The inundation analysis from 2015 to 2022 revealed that the maximum flood extent was observed in 2020, with an affected area of 33,537.6 km2 and 34,937.9 km2 in the Ganga–Brahmaputra basin, respectively. The flood hazard analysis identified Upper Ganga (8877.52 km2), Ghaghara (18573.9 km2) and Teesta (1543.06 km2) as having the highest proportion of their geographical area under very high-hazard zone and the highest percentage in the very low hazard zones were observed in Jamuneshwary (1093.55 km2), Atreyee (4410.42 km2), and Kulsi (1273.89 km2). By first mapping these watersheds with precision and then using various parameters for flood hazard analysis, it ensures accurate identification of flood-prone areas, offering valuable insights for flood management and mitigation in a critical region. © Indian Academy of Sciences 2025.
-
This study proposes a hybrid urban flood damage prediction framework that integrates a Deep Feed-Forward Neural Network (DFNN) with a Rainfall-Runoff (R-R) model and the Korean Flood Risk Assessment Model (K-FRM). The model predicts 10 types of flood risk indicators (FRIs), including damage to residential and non-residential buildings, using only simplified rainfall variables (SRVs), eliminating the need for complex hydrodynamic simulations. Synthetic rainfall scenarios were generated for training and fed into the R-R model, whose outputs were processed through K-FRM to produce training data for the DFNN model. The optimized DFNN model was validated by comparing its predictions with flood damage estimates from K-FRM, demonstrating a Nash-Sutcliffe Efficiency (NSE) of up to 0.87 and an R2 of up to 0.88, indicating strong predictive performance across flood risk indicators. These results highlight the effectiveness of the DFNN-based hybrid approach in capturing flood damage patterns and providing rapid predictions using forecasted rainfall data. The proposed method offers a practical and computationally efficient tool for urban flood risk management and disaster mitigation planning. © 2025 The Authors
-
Flooding, caused by the excessive accumulation of water on land, disrupts activities in floodplain regions, particularly during the rainy season. The main objective is to map Flood vulnerability areas and identify regions most vulnerable to flooding to inform effective flood management strategies using an integrated approach that combines remote sensing, geographic information systems (GIS), and the analytical hierarchy process (AHP) to assess Flood vulnerability in the Wuseta Watershed. The research was conducted in three phases: pre-fieldwork, fieldwork, and post-fieldwork. Key factors influencing Flood vulnerability such as drainage density, elevation, land use/land cover, and slope were hierarchically weighted to produce a Flood vulnerability map. Rainfall distribution was not considered as a contributing factor the Ethiopian Meteorological Agency has installed only one weather station in the study area, located in Wuseta watershed. As a result, the rainfall distribution is considered uniform throughout the watershed, making it unsuitable for flood susceptibility assessment. The Flood vulnerability map categorizes the watershed into five zones: very high (0.07 km2), high (4.65 km2), moderate (7.86 km2), slight (4.41 km2), and very slight (0.001 km2). The results show that the upstream, northern, northwestern, and northeastern areas of the watershed face slight to very slight Flood vulnerability, while the southern region is highly vulnerable to flooding. These findings provide valuable insights for policymakers and local communities, aiding in the development of targeted mitigation strategies and raising awareness of flood-prone areas. This study underscores the value of integrating geospatial technologies and multi-criteria decision analysis in flood risk assessment, particularly in data-scarce regions, to enhance disaster preparedness and climate resilience. © The Author(s) 2025.
-
Flooding is a persistent hazard in tropical regions of India, primarily driven by intense precipitation and further aggravated by anthropogenic activities. Despite ongoing efforts, a gap persists in the development of comprehensive risk models that integrate hazard, vulnerability, and exposure components at a watershed level. This research seeks to bridge that gap by implementing a multi-criteria decision analysis (MCDA) technique, specifically the Analytical Hierarchy Process (AHP), to generate a risk map for the tropical Meenachil River Basin (MRB), originating in the Western Ghats, southwest India. Nine conditioning factors (CFs) were evaluated to assess hazard, and the resulting hazard layer was integrated with vulnerability data and different exposure factors (EFs), such as built-up height, built-up surface, built-up volume, population, and total exposure, to produce a risk map. Validation of the hazard model utilizing the Receiver Operating Characteristic (ROC) curve achieved an excellent Area Under Curve (AUC) of 0.825, along with high accuracy (0.818), F1-score (0.802), precision (0.812), and recall (0.793). Approximately 11% of the MRB lies in a very high hazard zone and 1.51% in a very high risk zone. These results advocate for sustainable flood management by identifying key risk zones, thereby facilitating the implementation of focused site-specific mitigation strategies. © The Author(s) 2025.
-
Flood risk assessment (FRA) is a process of evaluating potential flood damage by considering vulnerability of exposed elements and consequences of flood events through risk analysis which recommends the mitigation measures to reduce the impact of floods. This flood risk analysis is a technique used to identify and rank the level of flood risk through modeling and spatial analysis. In the present study, Musi River in the Osmansagar basin is taken in to consideration to evaluate the flood risk, which is located at Hyderabad. The input data collected for the study encompasses Hydrological and Meteorological datasets from Gandipet Guage station in Hyderabad, raster grid data for Osmansagar basin along with several indicators data influencing flood vulnerability. The primary research objective is to conduct a quantitative assessment of the Flood vulnerability index (FVI), to develop a comprehensive flood risk map and to evaluate the magnitude of damaging flood parameters, inundated volume and to analyze the regions inundated in the study area. In risk analysis, FVI determines the degree of which an area is susceptible to the negative impact of flood through various influencing indicators, Flood hazard map segregate the regions based on flood risk level through spatial analysis in Arc-GIS. A part of this study includes an integrated methodology for assessing flood inundation using Quantum Geographic Information Systems (QGIS) data modelling for spatial analysis, Hydraulic Engineering Center’s River Analysis System (HEC-RAS) hydraulic modelling for unsteady flow analysis and a machine learning technique i.e. XGBoost, to enhance the accuracy and efficiency of flood risk assessment. Subsequently, inundation map produced using HEC-RAS is superimposed with building footprints to identify vulnerable structures. The results obtained by risk analysis using hydraulic modeling, GIS analysis, and machine learning technique illustrates the flood vulnerability, areas having high flood risk and inundated volume along with predicted flood levels for next 10 years. These findings demonstrate the efficiency of the holistic approach in identifying vulnerability, flood-prone areas and evaluating potential impacts on infrastructure and communities. The outcomes of the study assist the decision-makers to gain valuable insights into flood risk management strategies. © The Author(s) 2025.
-
Milpa Alta, located southeast of Mexico City, is a key region for environmental sustainability due to its volcanic soil, biodiversity, and critical role in aquifer recharge, which supports the city's water supply. However, rapid urbanization has severely impacted the area, causing reduced vegetation cover, increased runoff, and diminished groundwater recharge, which intensify flooding, soil erosion, and water scarcity. This study aims to identify optimal sites for managed aquifer recharge (MAR) structures in Milpa Alta through a multi-criteria analysis incorporating criteria such as topography, land use, proximity to urban areas, and drainage networks. Uniquely, hydraulic simulations of flood scenarios were integrated into the analysis to improve the precision of site selection. Geographic information systems (GIS) were used to assess and combine these criteria, providing a spatial evaluation of suitability. Results indicate that the central and northern regions of Milpa Alta, particularly around San Francisco Tecoxpa and San Antonio Tecómitl, are most suitable for MAR implementation due to their permeable soils, gentle slopes, and proximity to agricultural lands and drainage networks. These MAR structures can enhance groundwater recharge and mitigate flood risks during extreme rainfall events, with the potential to capture up to 300,000 m3 of surface runoff during a single high-intensity storm event. Despite its strengths, the study acknowledges limitations such as the absence of detailed water quality analyses and the need for sensitivity testing of the criteria weighting. This research provides an innovative approach to MAR site selection by integrating flood simulations, offering a replicable model for similar regions. Successful implementation of MAR in Milpa Alta requires addressing water quality concerns, engaging stakeholders, and ensuring compliance with regulatory frameworks. The findings emphasize MAR's potential to balance urbanization pressures with sustainable water management and flood mitigation strategies in Mexico City's rapidly developing areas. © 2025 Wiley Periodicals LLC.