Votre recherche
Résultats 2 ressources
-
Abstract This paper focuses on evaluating the uncertainty of three common regionalization methods for predicting continuous streamflow in ungauged basins. A set of 268 basins covering 1.6 million km 2 in the province of Quebec was used to test the regionalization strategies. The multiple linear regression, spatial proximity, and physical similarity approaches were evaluated on the catchments using a leave‐one‐out cross‐validation scheme. The lumped conceptual HSAMI hydrological model was used throughout the study. A bootstrapping method was chosen to further estimate uncertainty due to parameter set selection for each of the parameter set/regionalization method pairs. Results show that parameter set selection can play an important role in regionalization method performance depending on the regionalization methods (and their variants) used and that equifinality does not contribute significantly to the overall uncertainty witnessed throughout the regionalization methods applications. Regression methods fail to consistently assign behavioral parameter sets to the pseudoungauged basins (i.e., the ones left out). Spatial proximity and physical similarity score better, the latter being the best. It is also shown that combining either physical similarity or spatial proximity with the multiple linear regression method can lead to an even more successful prediction rate. However, even the best methods were shown to be unreliable to an extent, as successful prediction rates never surpass 75%. Finally, this paper shows that the selection of catchment descriptors is crucial to the regionalization strategies' performance and that for the HSAMI model, the optimal number of donor catchments for transferred parameter sets lies between four and seven. , Key Points Uncertainty can be limited in regionalization Physical similarity method is best, followed by spatial proximity Regression‐augmented methods can yield better performance
-
Disasters such as floods, storms, heatwaves and droughts can have enormous implications for health, the environment and economic development. In this article, we address the question of how climate change might have influenced the impact of weather-related disasters. This relation is not straightforward, since disaster burden is not influenced by weather and climate events alone—other drivers are growth in population and wealth, and changes in vulnerability. We normalized disaster impacts, analyzed trends in the data and compared them with trends in extreme weather and climate events and vulnerability, following a 3 by 4 by 3 set-up, with three disaster burden categories, four regions and three extreme weather event categories. The trends in normalized disaster impacts show large differences between regions and weather event categories. Despite these variations, our overall conclusion is that the increasing exposure of people and economic assets is the major cause of increasing trends in disaster impacts. This holds for long-term trends in economic losses as well as the number of people affected. We also found similar, though more qualitative, results for the number of people killed; in all three cases, the role played by climate change cannot be excluded. Furthermore, we found that trends in historic vulnerability tend to be stable over time, despite adaptation measures taken by countries. Based on these findings, we derived disaster impact projections for the coming decades. We argue that projections beyond 2030 are too uncertain, not only due to unknown changes in vulnerability, but also due to increasing non-stationarities in normalization relations.