UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Enjeux majeurs
  • Prévision, projection et modélisation

Résultats 202 ressources

Recently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 11
  • Page 2 de 11
Résumés
  • Schulte, L., Santisteban, J. I., Fuller, I. C., & Ballesteros-Cánovas, J. A. (2025). Editorial preface to special issue: Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events. Global and Planetary Change, 254. https://doi.org/10.1016/j.gloplacha.2025.105021

    Floods constitute the most significant natural hazard to societies worldwide. Population growth and unchecked development have led to floodplain encroachment. Modelling suggests that climate change will regionally intensify the threat posed by future floods, with more people in harm's way. From a global change perspective, past flood events and their spatial-temporal patterns are of particular interest because they can be linked to former climate patterns, which can be used to guide future climate predictions. Millennial and centennial time series contain evidence of very rare extreme events, which are often considered by society as ‘unprecedented’. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regime, we can better forecast their future occurrence. This Virtual Special Issue (VSI) entitled Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events comprises 14 papers that focus on how centennial and millennia-scale natural and documentary flood archives help improve future flood science. Specifically, documentation of large and very rare flood episodes challenges society's lack of imagination regarding the scale of flood disasters that are possible (what we term here, the “unknown unknowns”). Temporal and spatial flood behaviour and related climate patterns as well as the reconstruction of flood propagation in river systems are important foci of this VSI. These reconstructions are crucial for the provision of robust and reliable data sets, knowledge and baseline information for future flood scenarios and forecasting. We argue that it remains difficult to establish analogies for understanding flood risk during the current period of global warming. Most studies in this VSI suggest that the most severe flooding occurred during relatively cool climate periods, such as the Little Ice Age. However, flood patterns have been significantly altered by land use and river management in many catchments and floodplains over the last two centuries, thereby obscuring the climate signal. When the largest floods in instrumental records are compared with paleoflood records reconstructed from natural and documentary archives, it becomes clear that precedent floods should have been considered in many cases of flood frequency analysis and flood risk modelling in hydraulic infrastructure. Finally, numerical geomorphological analysis and hydrological simulations show great potential for testing and improving our understanding of the processes and factors involved in the temporal and spatial behaviour of floods. © 2025 The Authors

  • Qiu, Y., Shi, X., & He, X. (2026). Enhancing flood prediction in the Lower Mekong River Basin by scale-independent interpretable deep learning model. Environmental Impact Assessment Review, 116. https://doi.org/10.1016/j.eiar.2025.108130

    Climate change has increased the frequency and intensity of extreme floods in the Lower Mekong River Basin (LMB). This study leverages the Long Short-Term Memory (LSTM) model to evaluate its performance in predicting river discharge across the LMB and to identify the key variables contributing to flood prediction through SHapley Additive exPlanation (SHAP) and Universal Multifractal (UM) analyses, in a scale-dependent and scale-independent manner, respectively. The performance of the LSTM model is satisfactory, with Nash–Sutcliffe Efficiency (NSE) values exceeding 0.9 for all subbasins when using all input features. The model tends to underestimate the largest peak flows in the midstream subbasins that experienced extreme rainfall events. According to SHAP, soil-related variables are important contributors to discharge prediction, with their impacts partially manifested through interactions with precipitation and runoff. Furthermore, the dominant contributing variables influencing flood prediction vary over time: soil-related variables and vegetation-related variables played a more significant role in earlier years, whereas hydrometeorological variables became more dominant after 2017. The UM analysis investigates the scaling behaviours of contributing variables, showing that hydrometeorological-related variables have a greater influence on predicting extreme discharge across the small temporal scales. Additionally, the UM analysis indicates that the model's performance improves as the temporal variability in extremes of the combined features decreases across 1 to 16 days. Overall, this study provides a comprehensive assessment of the LSTM model's performance in discharge prediction, emphasising the impact of the variability in the extremes of combined features through the scale-independent interpretation. These findings will offer valuable insights for stakeholders to improve flood risk management across the LMB. © 2025 The Authors

  • Ratanawong, P., Nunthaitaweekul, P., Huynh, P. T., & Weesakul, U. (2025). Impact of Climate Change on Human Health in Thailand: A Literature Review. Journal of Disaster Research, 20(4), 423–444. https://doi.org/10.20965/jdr.2025.p0423

    This study aims to find and summarize published studies that examined the effects of climate change on human health and diseases in Thailand by conducting aliterature review using the preferred reporting items for systematic reviews and meta-analysis guidelines between October 17, 2023, and January 31, 2024. We earched PubMed and OvidSP for relevant research. We included studies that were written in English orThai; primary research focused on climate change or its subsets (natural disasters or climate issues, such as rising temperatures and altered weather patterns that increase the frequency, intensity, and severity of manynatural disasters and climate issues); focused on human health; indexed by PubMed or OvidSP; available as published research with full-text journal articles; and published in 2013 or later. Our search yielded 53 relevant articles. These articles identified five main categories of climate issues: temperature, rainfall/precipitation, humidity, wind speed, and flooding. We identified five categories of health issues: dengue, respiratory diseases and infections, malaria, skin diseases/symptoms, and other health issues. The most studied relationship is between temperature and dengue. Most articles reported the harmful effects of climate issues on health, although four reported opposite effects, and seven reported no significant associations. Among the 53 articles, ten utilized prediction models. The main goal of this review is to summarize current research to guide future studies and assist policymakers in prioritizing climate-related health policies in Thailand. Study limitations include the use of only two databases, the restriction to articles from 2013 onwards, and the inclusion of only articles in English and Thai, which may have limited the number of articles found for this literature review. © 2025, Fuji Technology Press. All rights reserved.

  • Ahmad, R., Abdul Maulud, K. N., Bin Zamir, U., Mohd Razali, S. F., Yaseen, Z. M., Pradhan, B., Khan, M. N., & Eshquvvatov, B. (2025). A systematic literature review of digital elevation models and hydrological models integration for advanced flood risk management. Geomatics, Natural Hazards and Risk, 16(1). https://doi.org/10.1080/19475705.2025.2549487

    Floods are one of the most prevalent natural disasters, and advancements in geospatial technologies have revolutionized flood management, particularly the use of Digital Elevation Models (DEMs) in hydrological modelling. However, a comprehensive analysis DEMs integration in flood risk management is lacking. This study addresses this gap through a thorough Systematic Literature Review focusing on the combined application of DEMs and hydrological models in flood mitigation and risk management. The SLR scrutinized 21 articles, revealing eight key themes: DEM data sources and characteristics, DEM integration with hydrological models, flood hazard mapping applications, terrain impact assessment, model performance evaluation, machine learning in flood management, ecosystem services and resilience, and policy and governance implications. These findings emphasize the importance of precise DEM selection and correction for successful flood modelling, highlighting Advanced Land Observing Satellite as the most effective freely available DEM for use with the HEC-RAS unsteady flood model. This integration significantly enhances flood mitigation efforts and strengthens management strategies. Finally, this study underscores the pivotal role of DEM integration in crafting effective flood mitigation strategies, especially in addressing climate change challenges and bolstering community and ecosystem resilience. © 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

  • Golden, C. D., Childs, M. L., Mudele, O. E., Andriamizarasoa, F. A., Bouley, T. A., De Nicola, G., Fontaine, M. A., Huybers, P. J., Mahatante, P. T., Rabemananjara, R., Rakotoarison, N., Ramambason, H. R., Ramihantaniarivo, H., Randriamady, H. J., Randriatsara, H., Ravelomanantsoa, M. A., Razafinimanana, A. K. S., Rigden, A. J., Shumake-Guillemot, J., … Dominici, F. (2025). Climate-smart public health for global health resilience. The Lancet Planetary Health. https://doi.org/10.1016/j.lanplh.2025.101293

    Climate change poses urgent public health risks from rising global temperatures and extreme weather events, including heatwaves, droughts, and floods, which disproportionately affect vulnerable populations. To address the current silos embedded in climate, environmental, and public health monitoring and surveillance systems, climate-smart public health (CSPH) creates an integrated platform for action across these sectors, enabling more rapid and efficient responses to climate-related public health challenges. In this Personal View, we introduce the concept of CSPH, a data-driven framework designed to monitor, assess, and adapt to climate-related health impacts. CSPH incorporates surveillance, risk assessment, early warning systems, and resilient health-care infrastructure to address the evolving challenges of climate change. The framework adopts an iterative, community-centred model that responds to local needs and incorporates feedback from health-care providers and policy makers. CSPH also leverages data science and artificial intelligence to address a wide range of health concerns, including infectious diseases, non-communicable diseases, nutrition, and mental health. We applied this framework in Madagascar, a region highly vulnerable to climate impacts, where poverty, malnutrition, and frequent extreme weather events make climate adaptation particularly urgent. Early data analysis has shown strong climate sensitivity in important diseases such as malaria and diarrhoea, which could enable preparedness efforts to target some regions more efficiently. CSPH provides a pathway to enhance resilience in such settings by improving the capacity of public health systems to withstand and respond to climate-related stressors. © 2025 The Author(s)

  • Magoulick, P. (2025). AI-Enhanced Coastal Flood Risk Assessment: A Real-Time Web Platform with Multi-Source Integration and Chesapeake Bay Case Study. Water (Switzerland), 17(15). https://doi.org/10.3390/w17152231

    A critical gap exists between coastal communities’ need for accessible flood risk assessment tools and the availability of sophisticated modeling, which remains limited by technical barriers and computational demands. This study introduces three key innovations through Coastal Defense Pro: (1) the first operational web-based AI ensemble for coastal flood risk assessment integrating real-time multi-agency data, (2) an automated regional calibration system that corrects systematic model biases through machine learning, and (3) browser-accessible implementation of research-grade modeling previously requiring specialized computational resources. The system combines Bayesian neural networks with optional LSTM and attention-based models, implementing automatic regional calibration and multi-source elevation consensus through a modular Python architecture. Real-time API integration achieves >99% system uptime with sub-3-second response times via intelligent caching. Validation against Hurricane Isabel (2003) demonstrates correction from 197% overprediction (6.92 m predicted vs. 2.33 m observed) to accurate prediction through automated identification of a Chesapeake Bay-specific reduction factor of 0.337. Comprehensive validation against 15 major storms (1992–2024) shows substantial improvement over standard methods (RMSE = 0.436 m vs. 2.267 m; R2 = 0.934 vs. −0.786). Economic assessment using NACCS fragility curves demonstrates 12.7-year payback periods for flood protection investments. The open-source Streamlit implementation democratizes access to research-grade risk assessment, transforming months-long specialist analyses into immediate browser-based tools without compromising scientific rigor. © 2025 by the author.

  • Zhang, M., Chi, B., Gu, H., Zhou, J., Chen, H., Wang, W., Wang, Y., Chen, J., Yang, X., & Zhang, X. (2025). Assessing Hydropower Impacts on Flood and Drought Hazards in the Lancang–Mekong River Using CNN-LSTM Machine Learning. Water (Switzerland), 17(15). https://doi.org/10.3390/w17152352

    The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. © 2025 by the authors.

  • Kumar, G. P., & Dwarakish, G. S. (2025). Machine learning-based ensemble of Global climate models and trend analysis for projecting extreme precipitation indices under future climate scenarios. Environmental Monitoring and Assessment, 197(9). https://doi.org/10.1007/s10661-025-14469-6

    Monitoring changes in climatic extremes is vital, as they influence current and future climate while significantly impacting ecosystems and society. This study examines trends in extreme precipitation indices over an Indian tropical river basin, analyzing and ranking 28 Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Models (GCMs) based on their performance against India Meteorological Department (IMD) data. The top five performing GCMs were selected to construct multi-model ensembles (MMEs) using Machine Learning (ML) algorithms, Random Forest (RF), Support Vector Machine (SVM), Multiple Linear Regression (MLR), and the Arithmetic Mean. Statistical metrics reveal that the application of an RF model for ensembling performs better than other models. The analysis focused on six IMD-convention indices and eight indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). Future projections were examined for three timeframes: near future (2025–2050), mid-future (2051–2075), and far future (2076–2100) for SSP245 and SSP585 scenarios. Statistical trend analysis, the Mann-Kendall test, Sen’s Slope estimator, and Innovative Trend Analysis (ITA), were applied to the MME to assess variability and detect changes in extreme precipitation trends. Compared to SSP245, in the SSP585 scenario, Total Precipitation (PRCPTOT) shows a significant decreasing trend in the near future, mid-future, and far future and Moderate Rain (MR) shows a decreasing trend in the near future and far future of monsoon season. The findings reveal significant future trends in extreme precipitation, impacting Sustainable Development Goals (SDGs) achievement and providing crucial insights for sustainable water resource management and policy planning in the Kali River basin. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.

  • Narin, O. G., Sekertekin, A., Bayik, C., Bektas Balcik, F., Arıkan, M., Sanli, F. B., & Abdikan, S. (2025). Multi-Sensor Flood Mapping in Urban and Agricultural Landscapes of the Netherlands Using SAR and Optical Data with Random Forest Classifier. Remote Sensing, 17(15). https://doi.org/10.3390/rs17152712

    Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning method to evaluate the July 2021 flood in the Netherlands. The research developed 25 different feature scenarios through the combination of Sentinel-1, Landsat-8, and Radarsat-2 imagery data by using backscattering coefficients together with optical Normalized Difference Water Index (NDWI) and Hue, Saturation, and Value (HSV) images and Synthetic Aperture Radar (SAR)-derived Grey Level Co-occurrence Matrix (GLCM) texture features. The Random Forest (RF) classifier was optimized before its application based on two different flood-prone regions, which included Zutphen’s urban area and Heijen’s agricultural land. Results demonstrated that the multi-sensor fusion scenarios (S18, S20, and S25) achieved the highest classification performance, with overall accuracy reaching 96.4% (Kappa = 0.906–0.949) in Zutphen and 87.5% (Kappa = 0.754–0.833) in Heijen. For the flood class F1 scores of all scenarios, they varied from 0.742 to 0.969 in Zutphen and from 0.626 to 0.969 in Heijen. Eventually, the addition of SAR texture metrics enhanced flood boundary identification throughout both urban and agricultural settings. Radarsat-2 provided limited benefits to the overall results, since Sentinel-1 and Landsat-8 data proved more effective despite being freely available. This study demonstrates that using SAR and optical features together with texture information creates a powerful and expandable flood mapping system, and RF classification performs well in diverse landscape settings. © 2025 by the authors.

  • Zhang, H., Lu, B., Geng, Y., & Liu, Y. (2025). Predictive Flood Uncertainty Associated with the Overtopping Rates of Vertical Seawall on Coral Reef Topography. Water (Switzerland), 17(15). https://doi.org/10.3390/w17152186

    Accurate prediction of wave overtopping rates is essential for flood risk assessment along coral reef coastlines. This study quantifies the uncertainty sources affecting overtopping rates for vertical seawalls on reef flats, using ensemble simulations with a validated non-hydrostatic SWASH model. By generating extensive random wave sequences, we identify spectral resolution, wave spectral width, and wave groupiness as the dominant controls on the uncertainty. Statistical metrics, including the Coefficient of Variation ((Formula presented.)) and Range Uncertainty Level ((Formula presented.)), demonstrate that overtopping rates exhibit substantial variability under randomized wave conditions, with (Formula presented.) exceeding 40% for low spectral resolutions (50–100 bins), while achieving statistical convergence ((Formula presented.) around 20%) requires at least 700 frequency bins, far surpassing conventional standards. The (Formula presented.), which describes the ratio of extreme to minimal overtopping rates, also decreases markedly as the number of frequency bins increases from 50 to 700. It is found that the overtopping rate follows a normal distribution with 700 frequency bins in wave generation. Simulations further demonstrate that overtopping rates increase by a factor of 2–4 as the JONSWAP spectrum peak enhancement factor ((Formula presented.)) increases from 1 to 7. The wave groupiness factor ((Formula presented.)) emerges as a predictor of overtopping variability, enabling a more efficient experimental design through reduction in groupiness-guided replication. These findings establish practical thresholds for experimental design and highlight the critical role of spectral parameters in hazard assessment. © 2025 by the authors.

  • Liao, M., & Barros, A. P. (2025). Toward optimal rainfall for flood prediction in headwater basins – improving soil moisture initialization to close the water budget within observational uncertainty. Journal of Hydrology: Regional Studies, 61, 102700. https://doi.org/10.1016/j.ejrh.2025.102700
    Consulter sur linkinghub.elsevier.com
  • Adeyeri, O. E. (2025). Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways. Water, 17(15), 2247. https://doi.org/10.3390/w17152247

    African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 °C/decade), leading to more intense hydrological extremes and regionally varied responses. For example, East Africa has shown reversed temperature–moisture correlations since the Holocene onset, while West African rivers demonstrate nonlinear runoff sensitivity (a threefold reduction per unit decline in rainfall). Land-use and land-cover changes (LULCC) are as impactful as climate change, with analysis from 1959–2014 revealing extensive conversion of primary non-forest land and a more than sixfold increase in the intensity of pastureland expansion by the early 21st century. Future projections, exemplified by studies in basins like Ethiopia’s Gilgel Gibe and Ghana’s Vea, indicate escalating aridity with significant reductions in surface runoff and groundwater recharge, increasing aquifer stress. These findings underscore the need for integrated adaptation strategies that leverage remote sensing, nature-based solutions, and transboundary governance to build resilient water futures across Africa’s diverse basins.

    Consulter sur www.mdpi.com
  • Zhou, S., Jia, W., Geng, X., Xu, H., Diao, H., Liu, Z., Wang, M., Fu, X., Wu, Y., Qiao, R., & Wu, Z. (2025). Quantifying the spatiotemporal dynamics of urban flooding susceptibility in the greater bay area under shared socio-economic pathways using the SD-PLUS-LightGBM framework. Resources, Conservation and Recycling, 223. https://doi.org/10.1016/j.resconrec.2025.108534

    Urbanization and climate change keep intensifying extreme rainfall events. Previous studies have explored urban flood susceptibility, yet a comprehensive approach that unifies these perspectives has remained underdeveloped. This study established a holistic framework using the SD-PLUS-LightGBM model with multiple variables under three SSP-RCP scenarios to predict spatial-temporal dynamics of flood susceptibility in the Greater Bay Area between 2030 and 2050. Compared with traditional models, LightGBM established superior predictive accuracy and operational reliability for urban flood susceptibility mapping. The results indicated a non-linear expansion of high-susceptibility zones, with SSP5–8.5 projections showing a two-fold increase in vulnerable areas by 2050 relative to 2020 baselines. Regions experiencing pronounced susceptibility transitions were expected to grow significantly (0.23 % of the total area), concentrated in historic urban cores and peri‑urban interfaces. This study offered an in-depth approach to stormwater management along with targeted recommendations for sustainable urban planning and design. © 2025

  • Mok, J.-Y., Moon, H.-T., Kim, G.-H., Kim, K.-T., & Moon, Y.-I. (2025). Deep learning-enhanced flood damage prediction: A DFNN-based hybrid approach with simplified inputs. International Journal of Disaster Risk Reduction, 128. https://doi.org/10.1016/j.ijdrr.2025.105743

    This study proposes a hybrid urban flood damage prediction framework that integrates a Deep Feed-Forward Neural Network (DFNN) with a Rainfall-Runoff (R-R) model and the Korean Flood Risk Assessment Model (K-FRM). The model predicts 10 types of flood risk indicators (FRIs), including damage to residential and non-residential buildings, using only simplified rainfall variables (SRVs), eliminating the need for complex hydrodynamic simulations. Synthetic rainfall scenarios were generated for training and fed into the R-R model, whose outputs were processed through K-FRM to produce training data for the DFNN model. The optimized DFNN model was validated by comparing its predictions with flood damage estimates from K-FRM, demonstrating a Nash-Sutcliffe Efficiency (NSE) of up to 0.87 and an R2 of up to 0.88, indicating strong predictive performance across flood risk indicators. These results highlight the effectiveness of the DFNN-based hybrid approach in capturing flood damage patterns and providing rapid predictions using forecasted rainfall data. The proposed method offers a practical and computationally efficient tool for urban flood risk management and disaster mitigation planning. © 2025 The Authors

  • Devi, K., Reddy, C. C., Rahul, K., Khuntia, J. R., & Das, B. S. (2025). A holistic methodology for evaluating flood vulnerability, generating flood risk map and conducting detailed flood inundation assessment. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-13025-z

    Flood risk assessment (FRA) is a process of evaluating potential flood damage by considering vulnerability of exposed elements and consequences of flood events through risk analysis which recommends the mitigation measures to reduce the impact of floods. This flood risk analysis is a technique used to identify and rank the level of flood risk through modeling and spatial analysis. In the present study, Musi River in the Osmansagar basin is taken in to consideration to evaluate the flood risk, which is located at Hyderabad. The input data collected for the study encompasses Hydrological and Meteorological datasets from Gandipet Guage station in Hyderabad, raster grid data for Osmansagar basin along with several indicators data influencing flood vulnerability. The primary research objective is to conduct a quantitative assessment of the Flood vulnerability index (FVI), to develop a comprehensive flood risk map and to evaluate the magnitude of damaging flood parameters, inundated volume and to analyze the regions inundated in the study area. In risk analysis, FVI determines the degree of which an area is susceptible to the negative impact of flood through various influencing indicators, Flood hazard map segregate the regions based on flood risk level through spatial analysis in Arc-GIS. A part of this study includes an integrated methodology for assessing flood inundation using Quantum Geographic Information Systems (QGIS) data modelling for spatial analysis, Hydraulic Engineering Center’s River Analysis System (HEC-RAS) hydraulic modelling for unsteady flow analysis and a machine learning technique i.e. XGBoost, to enhance the accuracy and efficiency of flood risk assessment. Subsequently, inundation map produced using HEC-RAS is superimposed with building footprints to identify vulnerable structures. The results obtained by risk analysis using hydraulic modeling, GIS analysis, and machine learning technique illustrates the flood vulnerability, areas having high flood risk and inundated volume along with predicted flood levels for next 10 years. These findings demonstrate the efficiency of the holistic approach in identifying vulnerability, flood-prone areas and evaluating potential impacts on infrastructure and communities. The outcomes of the study assist the decision-makers to gain valuable insights into flood risk management strategies. © The Author(s) 2025.

  • Chakrabortty, R., Ali, T., Atabay, S., Roy, P., & Pande, C. B. (2025). Impact of climate change scenario on sea level rise and future coastal flooding in major coastal cities of India. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-13394-5

    This study evaluates the impacts of projected sea level rise (SLR) on coastal flooding across major Indian cities: Mumbai, Kolkata, Chennai, Visakhapatnam, Surat, Kochi, Thiruvananthapuram, and Mangaluru. Machine learning models, including Long Short-Term Memory (LSTM), Random Forest (RF), and Gradient Boosting (GB), has been employed to assess flood risks under four Shared Socioeconomic Pathways (SSP 126, 245, 370, and 585) emission scenarios. The research utilized these models because they demonstrate high performance in handling difficult data relationships and both temporal patterns and sophisticated environmental data. SLR projections provided by computers generate forecasts that combine with digital elevation models (DEMs) to determine coastal flooding risks and locate flood-prone areas. Results reveal that Mumbai and Kolkata face the highest flood risks, particularly under high emission scenarios, while Kochi and Mangaluru exhibit moderate exposure. Model performance is validated using residual analysis and Receiver Operating Characteristic (ROC) curves, confirming reliable predictive accuracy. These findings provide essential information for urban planners and policymakers to prioritize climate adaptation strategies in vulnerable coastal cities. © The Author(s) 2025.

  • Li, J., Pan, G., Chen, Y., Wang, X., Huang, P., Zhang, L., & Zhou, H. (2025). Rapid-Mapping Maximum Water Depth Map of Urban Flood Using a Highly Adaptable Machine Learning Based Model. Journal of Flood Risk Management, 18(3). https://doi.org/10.1111/jfr3.70095

    Rapid urban flood mapping is crucial for timely risk alerts and emergency relief. Machine learning (ML)-based mapping models emerge as a promising approach for fast, accurate inundation forecasts. However, current ML models often use precipitation features as inputs and predict maximum flood depth for all grid cells of a specific region simultaneously. This special design improves their prediction efficiency but limits their application in new regions. This study aims to create a highly adaptable, rapid urban maximum flood water depth mapping model based on the random forest regression algorithm and the extreme gradient boosting algorithm. Our mapping model additionally incorporates terrain and land-use features, besides the precipitation feature, as input variables and generates the maximum water depth only for a grid cell in each mapping. Thus, it can be unchangeably applied to the grid cells in a new area when the model is fully trained. In the case study of Shenzhen, China, our ML-based mapping model demonstrated excellent mapping ability in both training and validation sets. The coefficient of determination (R2) is consistently greater than or close to 95%. Furthermore, it revealed good generalization ability when directly applied to a new rainfall event (R2 = 0.875) and a new area (R2 = 0.810). Meanwhile, the time cost of the mapping model is less than 3 s, meeting the requirement for real-time mapping. These results indicate that this highly adaptable model, once appropriately trained, can be applied to rapid urban flood severity mapping, which significantly reduces its use cost in urban flood management. © 2025 The Author(s). Journal of Flood Risk Management published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.

  • Eichelmann, E., Naber, N., Battamo, A. Y., O’Sullivan, J. J., Salauddin, & Kelly-Quinn, M. (2025). A REVIEW OF THE IMPACT OF EXTREME WEATHER EVENTS ON FRESHWATER, TERRESTRIAL AND MARINE ECOSYSTEMS. Biology and Environment, 125 B, 101–134. https://doi.org/10.1353/bae.2025.a966125

    Extreme weather events (EWEs), including floods, droughts, heatwaves and storms, are increasingly recognised as major drivers of biodiversity loss and ecosystem degradation. In this systematic review, we synthesise 251 studies documenting the impacts of extreme weather events on freshwater, terrestrial and marine ecosystems, with the goal of informing effective conservation and management strategies for areas of special conservation or protection focus in Ireland.Twenty-two of the reviewed studies included Irish ecosystems. In freshwater systems, flooding (34 studies) was the most studied EWE, often linked to declines in species richness, abundance and ecosystem function. In terrestrial ecosystems, studies predominantly addressed droughts (60 studies) and extreme temperatures (48 studies), with impacts including increase in mortality, decline in growth and shift in species composition. Marine and coastal studies focused largely on storm events (33 studies), highlighting physical damages linked to wave actions, behavioural changes in macrofauna, changes in species composition and distribution, and loss in habitat cover. Results indicate that most EWEs lead to negative ecological responses, although responses are context specific.While positive responses to EWEs are rare, species with adaptive traits displayed some resilience, especially in ecosystems with high biodiversity or refuge areas.These findings underscore the need for conservation strategies that incorporate EWE projections, particularly for protected habitats and species. © 2025 Royal Irish Academy. All rights reserved.

  • Wang, B., Zhang, X., Li, C. Y., Chen, Z., & Tse, T. K. T. (2025). Advances in flow and civil structures. Physics of Fluids, 37(7). https://doi.org/10.1063/5.0280956

    The Flow and Civil Structures special collection is one of the earliest and largest efforts to consolidate transformative research bridging fluid mechanics and civil engineering. It addresses mutual and escalating challenges posed by extreme environmental loads and rapid urbanization, linking these two massive research fields. With nearly 200 papers, contributions span fluid-structure interactions in bridges, building, and high-speed railways; hydrodynamic resilience of offshore infrastructure; granular flows in urban drainage systems; turbulence-driven pollutant dispersion; and much beyond. The collection features advances in experiments, numerical simulations, field measurements, and analytical methods to improve predictions of wind-induced vibrations, optimize wave-resistant design, and mitigate urban flooding hazards. By integrating artificial intelligence and machine learning analysis, it advances infrastructure resilience for compound hazards in an increasingly dynamic climate, addressing both global and local scales. © 2025 Author(s).

  • Dantas, L. G., Ferreira, A. J. F., Pinto Junior, J. A., Cortes, T. R., Neves, D. J. D., de Oliveira, B. F. A., & da Silveira, I. H. (2025). Projections of extreme weather events according to climate change scenarios and populations at-risk in Brazil. Climatic Change, 178(8). https://doi.org/10.1007/s10584-025-03989-2

    Extreme weather events, such as heat waves, heavy rainfall and droughts, have become more frequent and intense in Brazil. According to climate change scenarios, this trend, which has a negative impact on people’s health and living conditions, will continue. Here, we analysed indicators for extreme weather events resulting from climate change, projected for the 21st century, alongside socio-demographic indicators for Brazilian municipalities, in an attempt to identify populations exposed to the risks of the climate crisis. We calculated the values of indicators for extreme air temperature and precipitation events, based on NEX-GDDP-CMIP6 data, for a reference period and for the future, as well as socio-demographic indicators based on recent census data. Using Spearman’s coefficient, we then calculated anomaly indicators for the future time intervals and analysed correlations with the socio-demographic indicators. Our results indicate a reduction in cold days and an increase in hot days and heat waves in both scenarios (SSP2-4.5 and SSP5-8.5), with the most changes occurring in the highest emission scenario. The extreme precipitation indicators suggest both an increase and a reduction in intense precipitation and droughts in a number of the country’s regions. The projected changes are more intense in the highest emission scenario, and in the North and Northeast regions. We noted a trend for greatest occurrence of extreme events in locations with a higher proportion of Black, Parda/Brown, Indigenous and Quilombola populations, and the socially vulnerable. We recommend that policies to adapt and mitigate the impacts of climate change focus on reducing inequalities and promoting climate justice. © The Author(s) 2025.

  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 11
  • Page 2 de 11
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-10-30 06 h 30 (UTC)

Explorer

Axes du RIISQ

  • 1 - aléas, vulnérabilités et exposition (92)
  • 2 - enjeux de gestion et de gouvernance (63)
  • 3 - aspects biopsychosociaux (97)
  • 4 - réduction des vulnérabilités (56)
  • 5 - aide à la décision, à l’adaptation et à la résilience (74)

Enjeux majeurs

  • Prévision, projection et modélisation
  • Inégalités et événements extrêmes (53)
  • Risques systémiques (35)

Lieux

  • Canada (76)
  • Québec (province) (27)
  • États-Unis (20)
  • Europe (10)

Secteurs et disciplines

  • Nature et Technologie (160)
  • Société et Culture (80)
  • Santé (46)

Types d'événements extrêmes

  • Inondations et crues (118)
  • Évènements liés au froid (neige, glace) (94)
  • Sécheresses et canicules (22)
  • Feux de forêts (2)

Types d'inondations

  • Fluviales (50)
  • Submersion côtière (9)
  • Par embâcle (8)
  • Pluviales (5)

Type de ressource

  • Article de colloque (4)
  • Article de journal (1)
  • Article de revue (167)
  • Chapitre de livre (2)
  • Jeu de données (2)
  • Prépublication (4)
  • Rapport (3)
  • Thèse (19)

Année de publication

  • Entre 1900 et 1999 (1)
    • Entre 1990 et 1999 (1)
      • 1994 (1)
  • Entre 2000 et 2025 (201)
    • Entre 2000 et 2009 (1)
      • 2007 (1)
    • Entre 2010 et 2019 (41)
      • 2011 (1)
      • 2012 (1)
      • 2014 (2)
      • 2015 (7)
      • 2016 (7)
      • 2017 (4)
      • 2018 (6)
      • 2019 (13)
    • Entre 2020 et 2025 (159)
      • 2020 (21)
      • 2021 (21)
      • 2022 (23)
      • 2023 (27)
      • 2024 (21)
      • 2025 (44)
      • 2026 (2)

Langue de la ressource

  • Anglais (136)
  • Français (14)

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web