Votre recherche
Résultats 3 ressources
-
Canada has experienced some of the most rapid warming on Earth over the past few decades with a warming rate about twice that of the global mean temperature since 1948. Long-term warming is observed in Canada’s annual, winter and summer mean temperatures, and in the annual coldest and hottest daytime and nighttime temperatures. The causes of these changes are assessed by comparing observed changes with climate model simulated responses to anthropogenic and natural (solar and volcanic) external forcings. Most of the observed warming of 1.7°C increase in annual mean temperature during 1948–2012 [90% confidence interval (1.1°, 2.2°C)] can only be explained by external forcing on the climate system, with anthropogenic influence being the dominant factor. It is estimated that anthropogenic forcing has contributed 1.0°C (0.6°, 1.5°C) and natural external forcing has contributed 0.2°C (0.1°, 0.3°C) to the observed warming. Up to 0.5°C of the observed warming trend may be associated with low frequency variability of the climate such as that represented by the Pacific decadal oscillation (PDO) and North Atlantic oscillation (NAO). Overall, the influence of both anthropogenic and natural external forcing is clearly evident in Canada-wide mean and extreme temperatures, and can also be detected regionally over much of the country.
-
Significant flood damage occurred near Montreal in May 2017, as flow from the upstream Ottawa River basin (ORB) reached its highest levels in over 50years. Analysis of observations and experiments performed with the fifth generation Canadian Regional Climate Model (CRCM5) show that much above average April precipitation over the ORB, a large fraction of which fell as rain on an existing snowpack, increased streamflow to near record-high levels. Subsequently, two heavy rainfall events affected the ORB in the first week of May, ultimately resulting in flooding. This heavy precipitation during April and May was linked to large-scale atmospheric features. Results from sensitivity experiments with CRCM5 suggest that the mass and distribution of the snowpack have a major influence on spring streamflow in the ORB. Furthermore, the importance of using an appropriate frozen soil parameterization when modelling spring streamflows in cold regions was confirmed. Event attribution using CRCM5 showed that events such as the heavy April 2017 precipitation accumulation over the ORB are between two and three times as likely to occur in the present-day climate as in the pre-industrial climate. This increase in the risk of heavy precipitation is linked to increased atmospheric moisture due to warmer temperatures in the present-day climate, a direct consequence of anthropogenic emissions, rather than changes in rain-generating mechanisms or circulation patterns. Warmer temperatures in the present-day climate also reduce early-spring snowpack in the ORB, offsetting the increase in rainfall and resulting in no discernible change to the likelihood of extreme surface runoff.
-
The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state-of-the-art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. This study presents an assessment from the CanSISE Network of the ability of the second-generation Canadian Earth System Model (CanESM2) and the Canadian Seasonal to Interannual Prediction System (CanSIPS) to simulate and predict snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth system models (ESMs) in Phase5 of the Coupled Model Intercomparison Project (CMIP5), and large initial-condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow mass over Canada, reflecting a broader northern hemispheric positive bias. Biases in seasonal snow cover extent are generally less pronounced. CanESM2 also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea ice trends there. The strengths and weaknesses of the modelling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their use in operational seasonal prediction and for generating large ensembles of multidecadal simulations. Improvements in climate-prediction systems like CanSIPS rely not just on simulation quality but also on using novel observational constraints and the ready transfer of research to an operational setting. Improvements in seasonal forecasting practice arising from recent research include accurate initialization of snow and frozen soil, accounting for observational uncertainty in forecast verification, and sea ice thickness initialization using statistical predictors available in real time.