Votre recherche
Résultats 2 ressources
-
Abstract Ensemble forecasting applied to the field of hydrology is currently an established area of research embracing a broad spectrum of operational situations. This work catalogs the various pathways of ensemble streamflow forecasting based on an exhaustive review of more than 700 studies over the last 40 years. We focus on the advanced state of the art in the model‐based (dynamical) ensemble forecasting approaches. Ensemble streamflow prediction systems are categorized into three leading classes: statistics‐based streamflow prediction systems, climatology‐based ensemble streamflow prediction systems and numerical weather prediction‐based hydrological ensemble prediction systems. For each ensemble approach, technical information, as well as details about its strengths and weaknesses, are provided based on a critical review of the studies listed. Through this literature review, the performance and uncertainty associated with the ensemble forecasting systems are underlined from both operational and scientific viewpoints. Finally, the remaining key challenges and prospective future research directions are presented, notably through hybrid dynamical ‐ statistical learning approaches, which obviously present new challenges to be overcome in order to allow the successful employment of ensemble streamflow forecasting systems in the next decades. Targeting students, researchers and practitioners, this review provides a detailed perspective on the major features of an increasingly important area of hydrological forecasting. , Key Points This work summarizes the 40 years of research in the generation of streamflow forecasts based on an exhaustive review of studies Ensemble prediction systems are categorized into three classes: statistics‐based, climatology‐based and numerical weather prediction‐based hydrological ensemble prediction systems For each ensemble forecasting system, thorough technical information is provided
-
Abstract. Hybrid hydroclimatic forecasting systems employ data-driven (statistical or machine learning) methods to harness and integrate a broad variety of predictions from dynamical, physics-based models – such as numerical weather prediction, climate, land, hydrology, and Earth system models – into a final prediction product. They are recognized as a promising way of enhancing the prediction skill of meteorological and hydroclimatic variables and events, including rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. Hybrid forecasting methods are now receiving growing attention due to advances in weather and climate prediction systems at subseasonal to decadal scales, a better appreciation of the strengths of AI, and expanding access to computational resources and methods. Such systems are attractive because they may avoid the need to run a computationally expensive offline land model, can minimize the effect of biases that exist within dynamical outputs, benefit from the strengths of machine learning, and can learn from large datasets, while combining different sources of predictability with varying time horizons. Here we review recent developments in hybrid hydroclimatic forecasting and outline key challenges and opportunities for further research. These include obtaining physically explainable results, assimilating human influences from novel data sources, integrating new ensemble techniques to improve predictive skill, creating seamless prediction schemes that merge short to long lead times, incorporating initial land surface and ocean/ice conditions, acknowledging spatial variability in landscape and atmospheric forcing, and increasing the operational uptake of hybrid prediction schemes.