Votre recherche
Résultats 4 ressources
-
Abstract. In northern cold-temperate countries, a large portion of annual streamflow is produced by spring snowmelt, which often triggers floods. It is important to have spatial information about snow parameters such as snow water equivalent (SWE), which can be incorporated into hydrological models, making them more efficient tools for improved decision-making. The future Terrestrial Snow Mass Mission (TSMM) aims to provide high-resolution spatially distributed SWE information; thus, spatial SWE calibration should be considered along with conventional streamflow calibration for model optimization since the overall water balance is often a key objective in the hydrological modelling. The present research implements a unique spatial pattern metric in a multi-objective framework for calibration approach of hydrological models and attempts to determine whether raw SNODAS data can be utilized for hydrological model calibration. The SPAtial Efficiency (SPAEF) metric is explored for spatially calibrating SWE. The HYDROTEL hydrological model is applied to the Au Saumon River Watershed (∽1120 km2) in Eastern Canada using MSWEP precipitation data and ERA-5 land reanalysis temperature data as input to generate high-resolution SWE and streamflow. Different calibration experiments are performed combining Nash-Sutcliffe efficiency (NSE) for streamflow and root-mean-square error (RMSE), and SPAEF for SWE, using the Dynamically Dimensioned Search (DDS) and Pareto Archived Multi-Objective Optimization (PADDS) algorithms. Results of the study demonstrate that multi-objective calibration outperforms sequential calibration in terms of model performance. Traditional model calibration involving only streamflow produced slightly higher NSE values; however, the spatial distribution of SWE could not be adequately maintained. This study indicates that utilizing SPAEF for spatial calibration of snow parameters improved streamflow prediction compared to the conventional practice of using RMSE for calibration. SPAEF is further implied to be a more effective metric than RMSE for both sequential and multi-objective calibration. During validation, the calibration experiment incorporating multi-objective SPAEF exhibits enhanced performance in terms of NSE and Kling-Gupta Efficiency (KGE) compared to calibration experiment solely based on NSE. This observation supports the notion that incorporating SPAEF computed on raw SNODAS data within the calibration framework results in a more robust hydrological model.
-
Abstract Collecting data on the dynamic breakup of a river's ice cover is a notoriously difficult task. However, such data are necessary to reconstruct the events leading to the formation of ice jams and calibrate numerical ice jam models. Photogrammetry using images from remotely piloted aircraft (RPA) is a cost-effective and rapid technique to produce large-scale orthomosaics and digital elevation maps (DEMs) of an ice jam. Herein, we apply RPA photogrammetry to document an ice jam that formed on a river in southern Quebec in the winter of 2022. Composite orthomosaics of the 2-km ice jam provided evidence of overbanking flow, hinge cracks near the banks and lengthy longitudinal stress cracks in the ice jam caused by sagging as the flow abated. DEMs helped identify zones where the ice rubble was grounded to the bed, thus allowing ice jam thickness estimates to be made in these locations. The datasets were then used to calibrate a one-dimensional numerical model of the ice jam. The model will be used in subsequent work to assess the risk of ice interacting with the superstructure of a low-level bridge in the reach and assess the likelihood of ice jam flooding of nearby residences.
-
Abstract Topo‐bathymetric LiDAR (TBL) can provide a continuous digital elevation model (DEM) for terrestrial and submerged portions of rivers. This very high horizontal spatial resolution and high vertical accuracy data can be promising for flood plain mapping using hydrodynamic models. Despite the increasing number of papers regarding the use of TBL in fluvial environments, its usefulness for flood mapping remains to be demonstrated. This review of real‐world experiments focusses on three research questions related to the relevance of TBL in hydrodynamic modelling for flood mapping at local and regional scales: (i) Is the accuracy of TBL sufficient? (ii) What environmental and technical conditions can optimise the quality of acquisition? (iii) Is it possible to predict which rivers would be good candidates for TBL acquisition? With a root mean square error (RMSE) of 0.16 m, results from real‐world experiments confirm that TBL provides the required vertical accuracy for hydrodynamic modelling. Our review highlighted that environmental conditions, such as turbidity, overhanging vegetation or riverbed morphology, may prove to be limiting factors in the signal's capacity to reach the riverbed. A few avenues have been identified for considering whether TBL acquisition would be appropriate for a specific river. Thresholds should be determined using geometric or morphological criteria, such as rivers with steep slopes, steep riverbanks, and rivers too narrow or with complex morphologies, to avoid compromising the quality or the extent of the coverage. Based on this review, it appears that TBL acquisition conditions for hydrodynamic modelling for flood mapping should optimise the signal's ability to reach the riverbed. However, further research is needed to determine the percentage of coverage required for the use of TBL as a source of bathymetry in a hydrodynamic model, and whether specific river sections must be covered to ensure model performance for flood mapping.
-
The Peace–Athabasca Delta (PAD) in western Canada is one of the largest inland deltas in the world. Flooding caused by the expansion of lakes beyond normal shorelines occurred during the summer of 2020 and provided a unique opportunity to evaluate the capabilities of remote sensing platforms to map surface water expansion into vegetated landscape with complex surface connectivity. Firstly, multi-source remotely sensed data via satellites were used to create a temporal reconstruction of the event spanning May to September. Optical synthetic aperture radar (SAR) and altimeter data were used to reconstruct surface water area and elevation as seen from space. Lastly, temporal water surface area and level data obtained from the existing satellites and hydrometric stations were used as input data in the CNES Large-Scale SWOT Simulator, which provided an overview of the newly launched SWOT satellite ability to monitor such flood events. The results show a 25% smaller water surface area for optical instruments compared to SAR. Simulations show that SWOT would have greatly increased the spatio-temporal understanding of the flood dynamics with complete PAD coverage three to four times per month. Overall, seasonal vegetation growth was a major obstacle for water surface area retrieval, especially for optical sensors.