Votre recherche
Résultats 2 ressources
-
ABSTRACTThis work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, variability and timing. The first methodology (direct downscaling) ascertains a direct link between large-scale atmospheric variables (the predictors) and low flow indices (the predictands). The second (indirect downscaling) involves downscaling precipitation and air temperature (local climate variables) that are introduced into a hydrological model to simulate flows. Synthetic flow time series are subsequently used to calculate the low flow indices. The statistical models used for downscaling low flow hydrological indices and local climate variables are: Sparse Bayesian Learning and Multiple Linear Regression. The results showed that direct downscaling using Sparse Bayesian Learning surpassed the other a...
-
Abstract Study Region: In Canada, dams which represent a high risk to human loss of life, along with important environmental and financial losses in case of failure, have to accommodate the Probable Maximum Flood (PMF). Five Canadian basins with different physiographic characteristics and geographic locations, and where the PMF is a relevant metric have been selected: Nelson, Mattagami, Kenogami, Saguenay and Manic-5. Study Focus: One of the main drivers of the PMF is the Probable Maximum Precipitation (PMP). Traditionally, the computation of the PMP relies on moisture maximization of high efficiency observed storms without consideration for climate change. The current study attempts to develop a novel approach based on traditional methods to take into account the non-stationarity of the climate using an ensemble of 14 regional climate model (RCM) simulations. PMPs, the 100-year snowpack and resulting PMF changes were computed between the 1971-2000 and 2041-2070 periods. New Hydrological Insights for the Region: The study reveals an overall increase in future spring PMP with the exception of the most northern basin Nelson. It showed a projected increase of the 100-year snowpack for the two northernmost basins, Nelson (8%) and Manic-5 (3%), and a decrease for the three more southern basins, Mattagami (-1%), Saguenay (-5%) and Kenogami (-9%). The future spring PMF is projected to increase with median values between -1.5% and 20%.