Votre recherche
Résultats 7 ressources
-
Waterborne pathogens are heterogeneously distributed across various spatiotemporal scales in water resources, and representative sampling is therefore crucial for accurate risk assessment. Since regulatory monitoring of microbiological water quality is usually conducted at fixed time intervals, it can miss short-term fecal contamination episodes and underestimate underlying microbial risks. In the present paper, we developed a new automated sampling methodology based on near real-time measurement of a biochemical indicator of fecal pollution. Online monitoring of β-D-glucuronidase (GLUC) activity was used to trigger an automated sampler during fecal contamination events in a drinking water supply and at an urban beach. Significant increases in protozoan parasites, microbial source tracking markers and E. coli were measured during short-term (<24 h) fecal pollution episodes, emphasizing the intermittent nature of their occurrence in water. Synchronous triggering of the automated sampler with online GLUC activity measurements further revealed a tight association between the biochemical indicator and culturable E. coli. The proposed event sampling methodology is versatile and in addition to the two triggering modes validated here, others can be designed based on specific needs and local settings. In support to regulatory monitoring schemes, it should ultimately help gathering crucial data on waterborne pathogens more efficiently during episodic fecal pollution events.
-
Abstract Temporal variations in concentrations of pathogenic microorganisms in surface waters are well known to be influenced by hydrometeorological events. Reasonable methods for accounting for microbial peaks in the quantification of drinking water treatment requirements need to be addressed. Here, we applied a novel method for data collection and model validation to explicitly account for weather events (rainfall, snowmelt) when concentrations of pathogens are estimated in source water. Online in situ β ‐ d ‐glucuronidase activity measurements were used to trigger sequential grab sampling of source water to quantify Cryptosporidium and Giardia concentrations during rainfall and snowmelt events at an urban and an agricultural drinking water treatment plant in Quebec, Canada. We then evaluate if mixed Poisson distributions fitted to monthly sampling data ( = 30 samples) could accurately predict daily mean concentrations during these events. We found that using the gamma distribution underestimated high Cryptosporidium and Giardia concentrations measured with routine or event‐based monitoring. However, the log‐normal distribution accurately predicted these high concentrations. The selection of a log‐normal distribution in preference to a gamma distribution increased the annual mean concentration by less than 0.1‐log but increased the upper bound of the 95% credibility interval on the annual mean by about 0.5‐log. Therefore, considering parametric uncertainty in an exposure assessment is essential to account for microbial peaks in risk assessment.