Votre recherche
Résultats 13 ressources
-
Adaptation to climate change is a challenge that is complex and involves increasing risk. Efforts to manage these risks involve many decision-makers, conflicting values, competing objectives and methodologies, multiple alternative options, uncertain outcomes, and debatable probabilities. Adaptation occurs at multiple levels in a complex decision environment and is generally evaluated as better–worse, not right–wrong, based on multiple criteria. Identifying the best adaptation response is difficult. Risk management techniques help to overcome these problems. Here, risk management is presented as a decision-making framework that assists in the selection of optimal strategies (according to various criteria) using a systems approach that has been well defined and generally accepted in public decision-making. In the context of adapting to climate change, the risk management process offers a framework for identifying, assessing, and prioritizing climate-related risks and developing appropriate adaptation responses. The theoretical discussion is illustrated with an example from Canada. It includes (a) the assessment of climate change-caused flood risk to the municipal infrastructure for the City of London, Ontario, Canada, and (b) analysis of adaptation options for management of the risk in one of the watersheds within the City of London – Dingman Creek.
-
In this study future flooding frequencies have been estimated for the Grand River catchment located in south - western Ontario, Canada. Historical and future climatic projections made by fifteen Coupled Model Inter - comparison Project - 3 climate models are bias - corrected and downscaled before they are used to obtain mid - and end of 21 st century streamflow projections. By comparing the future projected and historically observed precipitation and temperature record s it is found that the mean and extreme temperature events will intensify in future across the catchment. The increase is more drastic in the case of extreme events than the mean events. The sign of change in future precipitation is uncertain. Further flow extremes are expected to increase in magnitude and frequency in future across the catchment. The confidence in the projection is more for low return period (<10 years) extreme events than higher return period (10 - 100 years) events. It can be expected that increases in temperature will play a dominant role in increasing the magnitude of low return period flooding events while precipitation seems to play an important role in shaping the high return period events.
-
Climate change has a significant influence on streamflow variation. The aim of this study is to quantify different sources of uncertainties in future streamflow projections due to climate change. For this purpose, 4 global climate models, 3 greenhouse gas emission scenarios (representative concentration pathways), 6 downscaling models, and a hydrologic model (UBCWM) are used. The assessment work is conducted for 2 different future time periods (2036 to 2065 and 2066 to 2095). Generalized extreme value distribution is used for the analysis of the flow frequency. Strathcona dam in the Campbell River basin, British Columbia, Canada, is used as a case study. The results show that the downscaling models contribute the highest amount of uncertainty to future streamflow predictions when compared to the contributions by global climate models or representative concentration pathways. It is also observed that the summer flows into Strathcona dam will decrease, and winter flows will increase in both future time periods. In addition to these, the flow magnitude becomes more uncertain for higher return periods in the Campbell River system under climate change.
-
ABSTRACTTwo modelling approaches are presented in this article for spatial and temporal analysis of water resources risk. Major sources of uncertainty in water resources management are spatial and temporal variability. Spatial variability occurs when values fluctuate with the location of an area and temporal variability occurs when values fluctuate with time. System dynamics (SD) simulation and hydrodynamic modelling are presented in this article as tools for modelling the dynamic characteristics of flood risk and its spatial variability. The first modelling framework presents SD simulation coupled with 3D fuzzy set theory. Whereas the second modelling framework presents hydrodynamic modelling coupled with 3D fuzzy set theory. The two integrated modelling frameworks are illustrated and compared using the Red River flood of 1997 (Manitoba, Canada) as a case study. For the 1997 Red River case study, SD simulation proved to be efficient modelling approach for capturing the feedback-based dynamic processes oc...
-
The contemporary definition of integrated water resources management (IWRM) is introduced to promote a holistic approach in water engineering practices. IWRM deals with planning, design and operation of complex systems in order to control the quantity, quality, temporal and spatial distribution of water with the main objective of meeting human and ecological needs and providing protection from water related disasters. This paper examines the existing decision making support in IWRM practice, analyses the advantages and limitations of existing tools, and, as a result, suggests a generic multi-method modeling framework that has the main goal to capture all structural complexities of, and interactions within, a water resources system. Since the traditional tools do not provide sufficient support, this framework uses multi-method simulation technique to examine the codependence between water resources system and socioeconomic environment. Designed framework consists of (i) a spatial database, (ii) a traditional process-based model to represent the physical environment and changing conditions, and (iii) an agent-based spatially explicit model of socio-economic environment. The multi-agent model provides for building virtual complex systems composed of autonomous entities, which operate on local knowledge, possess limited abilities, affect and are affected by local environment, and thus, enact the desired global system behavior. Agent-based model is used in the presented work to analyze spatial dynamics of complex physical-social-economic-biologic systems. Based on the architecture of the generic multi-method modeling framework, an operational model for the Upper Thames River basin, Southwestern Ontario, Canada, is developed in cooperation with the local conservation authority. Six different experiments are designed by combining three climate and two socio-economic scenarios to analyze spatial dynamics of a complex physical-social-economic system of the Upper Thames River basin. Obtained results show strong dependence between changes in hydrologic regime, in this case surface runoff and groundwater recharge rates, and regional socio-economic activities.
-
Climate change has induced considerable changes in the dynamics of key hydro-climatic variables across Canada, including floods. In this study, runoff projections made by 21 General Climate Models (GCMs) under four Representative Concentration Pathways (RCPs) are used to generate 25 km resolution streamflow estimates across Canada for historical (1961–2005) and future (2061–2100) time-periods. These estimates are used to calculate future projected changes in flood magnitudes and timings across Canada. Results obtained indicate that flood frequencies in the northernmost regions of Canada, and south-western Ontario can be expected to increase in the future. As an example, the historical 100-year return period events in these regions are expected to become 10–60 year return period events. On the other hand, northern prairies and north-central Ontario can be expected to experience decreases in flooding frequencies in future. The historical 100-year return period flood events in these regions are expected to become 160–200 year return period events in future. Furthermore, prairies, parts of Quebec, Ontario, Nunavut, and Yukon territories can be expected to experience earlier snowmelt-driven floods in the future. The results from this study will help decision-makers to effectively manage and design municipal and civil infrastructure in Canada under a changing climate.
-
Summary Impacts of global climate change on water resources systems are assessed by downscaling coarse scale climate variables into regional scale hydro-climate variables. In this study, a new multisite statistical downscaling method based on beta regression (BR) is developed for generating synthetic precipitation series, which can preserve temporal and spatial dependence along with other historical statistics. The beta regression based downscaling method includes two main steps: (1) prediction of precipitation states for the study area using classification and regression trees, and (2) generation of precipitation at different stations in the study area conditioned on the precipitation states. Daily precipitation data for 53years from the ANUSPLIN data set is used to predict precipitation states of the study area where predictor variables are extracted from the NCEP/NCAR reanalysis data set for the same interval. The proposed model is applied to downscaling daily precipitation at ten different stations in the Campbell River basin, British Columbia, Canada. Results show that the proposed downscaling model can capture spatial and temporal variability of local precipitation very well at various locations. The performance of the model is compared with a recently developed non-parametric kernel regression based downscaling model. The BR model performs better regarding extrapolation compared to the non-parametric kernel regression model. Future precipitation changes under different GHG (greenhouse gas) emission scenarios also projected with the developed downscaling model that reveals a significant amount of changes in future seasonal precipitation and number of wet days in the river basin.
-
The KnnCAD Version 4 weather generator algorithm for nonparametric, multisite simulations of temperature and precipitation data is presented. The K-nearest neighbor weather generator essentially reshuffles the historical data, with replacement. In KnnCAD Version 4, a block resampling scheme is introduced to preserve the temporal correlation structure in temperature data. Perturbation of the reshuffled variable data is also added to enhance the generation of extreme values. The Upper Thames River Basin in Ontario, Canada isused as a case study and the model is shown to simulate effectively the historical characteristics at the site. The KnnCAD Version 4 approach is shown to improve on the previous versions of the model and offers a major advantage over many parametric and semiparametric weather generators in that multisite use can be easily achieved without making statistical assumptions dealing with the spatial correlations and probability distributions of each variable.
-
This study discusses the flooding related consequences of climate change on most populous Canadian cities and flow regulation infrastructure (FRI). The discussion is based on the aggregated results of historical and projected future flooding frequencies and flood timing as generated by Canada-wide hydrodynamic modelling in a previous study. Impact assessment on 100 most populous Canadian cities indicate that future flooding frequencies in some of the most populous cities such as Toronto and Montreal can be expected to increase from 100 (250) years to 15 (22) years by the end of the 21st century making these cities highest at risk to projected changes in flooding frequencies as a consequence of climate change. Overall 40–60% of the analyzed cities are found to be associated with future increases in flooding frequencies and associated increases in flood hazard and flood risk. The flooding related impacts of climate change on 1072 FRIs located across Canada are assessed both in terms of projected changes in future flooding frequencies and changes in flood timings. Results suggest that 40–50% of the FRIs especially those located in southern Ontario, western coastal regions, and northern regions of Canada can be expected to experience future increases in flooding frequencies. FRIs located in many of these regions are also projected to experience future changes in flood timing underlining that operating rules for those FRIs may need to be reassessed to make them resilient to changing climate.
-
This paper presents an integrated assessment model for use with climate policy decision making in Canada. The feedback based integrated assessment model ANEMI_CDN represents Canada within the global society-biosphere-climate-economy-energy system. The model uses a system dynamics simulation approach to investigate the impacts of climate change in Canada and policy options for adapting to changing global conditions. The disaggregation techniques allow ANEMI_CDN to show results with various temporal resolutions. Two Canadian policy scenarios are presented as illustrative examples to map policy impacts on key model variables, including population, water-stress, food production, energy consumption, and emissions under changing climate over this century. The main finding is a significant impact of a carbon tax on energy consumption. Two policy scenario simulations provide additional insights to policy makers regarding the choice of adaptation/mitigation options along with their implementation time.
-
Intensity Duration Frequency (IDF) curves are among the most common tools used in water resources management. They are derived from historical rainfall records under the assumption of stationarity. Change of climatic conditions makes the use of historical data for development of IDFs for the future unjustifiable. The IDF_CC, a web based tool, is designed, developed and implemented to allow local water professionals to quickly develop estimates related to the impact of climate change on IDF curves for almost any local rain monitoring station in Canada. The primary objective of the presented work was to standardize the IDF update process and make the results of current research on climate change impacts on IDF curves accessible to everyone. The tool is developed in the form of a decision support system (DSS) and represents an important step in increasing the capacity of Canadian water professionals to respond to the impacts of climate change. Climate change impact on IDF curves investigated.Standardized IDF update process.Two theoretical contributions incorporated: downscaling method and skill score computation method.Web based tool developed and implemented for updating IDF curves under climate change.
-
This paper provides an overview of the key processes that generate floods in Canada, and a context for the other papers in this special issue – papers that provide detailed examinations of specific floods and flood-generating processes. The historical context of flooding in Canada is outlined, followed by a summary of regional aspects of floods in Canada and descriptions of the processes that generate floods in these regions, including floods generated by snowmelt, rain-on-snow and rainfall. Some flood processes that are particularly relevant, or which have been less well studied in Canada, are described: groundwater, storm surges, ice-jams and urban flooding. The issue of climate change-related trends in floods in Canada is examined, and suggested research needs regarding flood-generating processes are identified.