Votre recherche
Résultats 2 ressources
-
Intensity Duration Frequency (IDF) curves are among the most common tools used in water resources management. They are derived from historical rainfall records under the assumption of stationarity. Change of climatic conditions makes the use of historical data for development of IDFs for the future unjustifiable. The IDF_CC, a web based tool, is designed, developed and implemented to allow local water professionals to quickly develop estimates related to the impact of climate change on IDF curves for almost any local rain monitoring station in Canada. The primary objective of the presented work was to standardize the IDF update process and make the results of current research on climate change impacts on IDF curves accessible to everyone. The tool is developed in the form of a decision support system (DSS) and represents an important step in increasing the capacity of Canadian water professionals to respond to the impacts of climate change. Climate change impact on IDF curves investigated.Standardized IDF update process.Two theoretical contributions incorporated: downscaling method and skill score computation method.Web based tool developed and implemented for updating IDF curves under climate change.
-
Abstract Study region Canada. Study focus Given the effects of climate change on extreme precipitation, updated Intensity-Duration-Frequency (IDF) relationships have been adopted across Canada. Since the IDFs’ generation is based on the assumption of stationarity, the rainfall statistics information may be unreliable. Recent research is attempting to develop a new methodology to integrate non-stationarity and climate change into IDFs updating process. Up to now, there is no comprehensive evaluation of the IDFs updating procedure at different locations. In this study, we analyzed the combined effect of non-stationarity and climate change on future IDFs at six selected gauging stations across Canada. New hydrological insights for the region A comparison of the updated future IDFs with historical IDFs indicates an intensification of extreme events for all study areas, increasing hazard to them. Sites located in the Northeast coastal region will be the most affected in the future by the extreme precipitation. In addition, there is a clear indication that rare events (100-year return period) will become more frequent (in some cases increase up to 443 % of the water infrastructure risk of failure has been observed). We argue that the above findings (i) offer a new overview of future extreme precipitation across Canada, and (ii) should be considered by the stakeholders with respect to climate change adaptation decisions.