Votre recherche
Résultats 3 ressources
-
What role can a speculative political ecology play in (re)imaging urban futures of climate extremes? In recent years, narratives of dystopian futures of climate extremes have proliferated in geosciences, and across the media and creative arts. These anxiety-fueled narratives often generate a sense of resignation and unavoidability, which contributes to foreclosing the possibility of radically different political projects. In this article, we argue that these narratives conceal the coproduction of nature and society and treat nature as the problem, thereby locking futures into dystopic configurations. Political ecology scholarship can contribute to generate a politics of possibility by reconceptualizing the relations that constitute urban futures under climate extremes as socionatural. This, we argue, calls for a more experimental political ecology and new forms of theorizing. To this aim, we develop a speculative political ecological approach grounded on a numerical model that examines the potential of transformative change in the aftermath of extreme flood events in a capitalist city. Analytically, this opens a unique possibility of exploring urban futures beyond current trajectories, and how these alternative futures might transform vulnerability and inequality across urban spaces. From a policy perspective, we lay the foundations for a new generation of models that apprehend the role of power and agency in shaping uneven urban futures of climate extremes.
-
Abstract Predicting floods and droughts is essential to inform the development of policy in water management, climate change adaptation and disaster risk reduction. Yet, hydrological predictions are highly uncertain, while the frequency, severity and spatial distribution of extreme events are further complicated by the increasing impact of human activities on the water cycle. In this commentary, we argue that four main aspects characterizing the complexity of human‐water systems should be explicitly addressed: feedbacks, scales, tradeoffs and inequalities. We propose the integration of multiple research methods as a way to cope with complexity and develop policy‐relevant science. , Plain Language Summary Several governments today claim to be following the science in addressing crises caused by the occurrence of extreme events, such as floods and droughts, or the emergence of global threats, such as climate change and COVID‐19. In this commentary, we show that there are no universal answers to apparently simple questions such as: Do levees reduce flood risk? Do reservoirs alleviate droughts? We argue that the best science we have consists of a plurality of legitimate interpretations and a range of foresights, which can be enriched by integrating multiple disciplines and research methods. , Key Points Accounting for both power relations and cognitive heuristics is key to unravel the interplay of floods, droughts and human societies Flood and drought predictions are complicated by the increasing impact of human activities on the water cycle We propose the integration of multiple research methods as a way to cope with uncertainty and develop policy‐relevant science
-
Abstract Risk management has reduced vulnerability to floods and droughts globally 1,2 , yet their impacts are still increasing 3 . An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data 4,5 . On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change 3 .