Votre recherche
Résultats 2 ressources
-
Landslide risk analysis is a common geotechnical evaluation and it aims to protect life and infrastructure. In the case of sensitive clay zones, landslides can affect large areas and are difficult to predict. Here we propose a methodology to determine the landslide hazard across a large territory, and we apply our approach to the Saint-Jean-Vianney area, Quebec, Canada. The initial step consists of creating a 3D model of the surficial deposits of the target area. After creating a chart of the material electrical resistivity adapted for eastern Canada, we applied electric induction to interpret the regional soil. We transposed parameter values obtained from the laboratory to a larger scale, that is to a regional slope using the results of a back analysis undertaken earlier, on a smaller slide within the same area. The regional 3D model of deposits is then used to develop a zonation map of slopes that are at risk and their respective constraint areas with the study region. This approach allowed us to target specific areas where a more precise stability analysis would be required. Our methodology offers an effective tool for stability analysis in territories characterized by the presence of sensitive clays.
-
Abstract Landslides involving sensitive clays are recurrent events in the world's northern regions and are especially notorious in eastern Canada. The two critical factors that separate sensitive clay landslides from traditional slope stability analysis are the highly brittle behavior in undrained conditions (strain-softening) characteristic of progressive or retrogressive failures and the large deformations associated with them. Conventional limit equilibrium analysis has numerous shortcomings in incorporating these characteristics when assessing landslides in sensitive clays. This paper presents an extensive literature review of the failure mechanics characteristics of landslides in sensitive clays and the existing constitutive models and numerical tools to analyze such slopes' stability and post-failure behavior. The advantages and shortcomings of the different techniques to incorporate strain-softening and large deformation in the numerical modeling of sensitive clay landslides are assessed. The literature review depicts that elastoviscoplastic soil models with non-linear strain-softening laws and rate effects represent the material behavior of sensitive clays. Though several numerical models have been proposed to analyze post-failure runouts, the amount of work performed in line with sensitive clay landslides is very scarce. That creates an urgent need to apply and further develop advanced numerical tools for better understanding and predicting these catastrophic events.