Votre recherche
Résultats 3 ressources
-
Abstract This study confronts the new concept of ‘surface storage’ with the old concept of ‘sponge effect’ to explain the spatio-temporal variability of the annual daily maximum flows measured in 17 watersheds of southern Quebec during the period 1930–2019. The new concept takes into account the hydrological impacts of wetlands and other topographic components of the landscape (lakes, depressions, ditches, etc.) while that of the sponge effect only takes into account the hydrological impacts of wetlands. With regard to spatial variability, the area of wetlands and other water bodies is the variable best correlated negatively with the magnitude but positively with the duration of flows. As for the temporal variability, the application of the long-term trend tests revealed a significant increase in the magnitude and, to a lesser extent, the duration of the flows occurring in the watersheds of the north shore characterized by a greater area of wetlands and other water bodies (>5%). This increase is explained by the fact that the storage capacity of these land types, which remains unchanged over time, does not make it possible to store the surplus runoff water brought by the increase in rainfall during the snowmelt season.
-
Abstract. Spaceborne microwave remote sensing (300 MHz–100 GHz) provides a valuable method for characterizing environmental changes, especially in Arctic–boreal regions (ABRs) where ground observations are generally spatially and temporally scarce. Although direct measurements of carbon fluxes are not feasible, spaceborne microwave radiometers and radar can monitor various important surface and near-surface variables that affect terrestrial carbon cycle processes such as respiratory carbon dioxide (CO2) fluxes; photosynthetic CO2 uptake; and processes related to net methane (CH4) exchange including CH4 production, transport and consumption. Examples of such controls include soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties and land cover. Microwave remote sensing also provides a means for independent aboveground biomass estimates that can be used to estimate aboveground carbon stocks. The microwave data record spans multiple decades going back to the 1970s with frequent (daily to weekly) global coverage independent of atmospheric conditions and solar illumination. Collectively, these advantages hold substantial untapped potential to monitor and better understand carbon cycle processes across ABRs. Given rapid climate warming across ABRs and the associated carbon cycle feedbacks to the global climate system, this review argues for the importance of rapid integration of microwave information into ABR terrestrial carbon cycle science.