Votre recherche
Résultats 3 ressources
-
Abstract This study investigates possible trends and teleconnections in temperature extremes in New South Wales (NSW), Australia. Daily maximum and minimum temperature data covering the period 1971–2021 at 26 stations located in NSW were used. Three indices, which focus on daily maximum temperature, daily minimum temperature, and average daily temperature in terms of Excessive Heat Factor (EHF) were investigated to identify the occurrence of heatwaves (HWs). The study considered HWs of different durations (1-, 5-, and 10-days) in relation to intensity, frequency, duration, and their first occurrence parameters. Finally, the influences of three global climate drivers, namely – the El Niño/Southern Oscillation (ENSO), the Southern Annular Mode (SAM), and the Indian Ocean Dipole (IOD) were investigated with associated heatwave attributes for extended Austral summers. In this study, an increasing trend in both hot days and nights was observed for most of the selected stations within the study area. The increase was more pronounced for the last decade (2011–2021) of the investigated time period. The number, duration and frequency of the heatwaves increased over time considering the EHF criterion, whereas no particular trend was detected in cases of TX90 and TN90. It was also evident that the first occurrence of all the HWs shifted towards the onset of the extended summer while considering the EHF criterion of HWs. The correlations between heatwave attributes and climate drivers depicted that heatwave over NSW was positively influenced by both the IOD and ENSO and negatively correlated with SAM. The findings of this study will be useful in formulating strategies for managing the impacts of extreme temperature events such as bushfires, floods, droughts to the most at-risk regions within NSW.
-
Abstract In flood frequency analysis (FFA), annual maximum (AM) model is widely adopted in practice due to its straightforward sampling process. However, AM model has been criticized for its limited flexibility. FFA using peaks-over-threshold (POT) model is an alternative to AM model, which offers several theoretical advantages; however, this model is currently underemployed internationally. This study aims to bridge the current knowledge gap by conducting a scoping review covering several aspects of the POT approach including model assumptions, independence criteria, threshold selection, parameter estimation, probability distribution, regionalization and stationarity. We have reviewed the previously published articles on POT model to investigate: (a) possible reasons for underemployment of the POT model in FFA; and (b) challenges in applying the POT model. It is highlighted that the POT model offers a greater flexibility compared to the AM model due to the nature of sampling process associated with the POT model. The POT is more capable of providing less biased flood estimates for frequent floods. The underemployment of POT model in FFA is mainly due to the complexity in selecting a threshold (e.g., physical threshold to satisfy independence criteria and statistical threshold for Generalized Pareto distribution – the most commonly applied distribution in POT modelling). It is also found that the uncertainty due to individual variable and combined effects of the variables are not well assessed in previous research, and there is a lack of established guideline to apply POT model in FFA.