Votre recherche
Résultats 2 ressources
-
Economic inequality is rising within many countries globally, and this can significantly influence the social vulnerability to natural hazards. We analysed income inequality and flood disasters in 67 middle- and high-income countries between 1990 and 2018 and found that unequal countries tend to suffer more flood fatalities. This study integrates geocoded mortality records from 573 major flood disasters with population and economic data to perform generalized linear mixed regression modelling. Our results show that the significant association between income inequality and flood mortality persists after accounting for the per-capita real gross domestic product, population size in flood-affected regions and other potentially confounding variables. The protective effect of increasing gross domestic product disappeared when accounting for income inequality and population size in flood-affected regions. On the basis of our results, we argue that the increasingly uneven distribution of wealth deserves more attention within international disaster-risk research and policy arenas.
-
Abstract Predicting floods and droughts is essential to inform the development of policy in water management, climate change adaptation and disaster risk reduction. Yet, hydrological predictions are highly uncertain, while the frequency, severity and spatial distribution of extreme events are further complicated by the increasing impact of human activities on the water cycle. In this commentary, we argue that four main aspects characterizing the complexity of human‐water systems should be explicitly addressed: feedbacks, scales, tradeoffs and inequalities. We propose the integration of multiple research methods as a way to cope with complexity and develop policy‐relevant science. , Plain Language Summary Several governments today claim to be following the science in addressing crises caused by the occurrence of extreme events, such as floods and droughts, or the emergence of global threats, such as climate change and COVID‐19. In this commentary, we show that there are no universal answers to apparently simple questions such as: Do levees reduce flood risk? Do reservoirs alleviate droughts? We argue that the best science we have consists of a plurality of legitimate interpretations and a range of foresights, which can be enriched by integrating multiple disciplines and research methods. , Key Points Accounting for both power relations and cognitive heuristics is key to unravel the interplay of floods, droughts and human societies Flood and drought predictions are complicated by the increasing impact of human activities on the water cycle We propose the integration of multiple research methods as a way to cope with uncertainty and develop policy‐relevant science