Votre recherche
Résultats 3 ressources
-
The preparation of accurate multi-hazard susceptibility maps is essential to effective disaster risk management. Past studies have relied mainly on traditional machine learning models, but these models do not perform well for complex spatial patterns. To address this gap, this study uses two meta-heuristic algorithms (Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)) to provide an optimized Random Forest (RF) model with better predictive ability. We focus on four significant hazards—landslides, land subsidence, wildfires, and floods—in Kurdistan Province, Iran, using Sentinel-1 and Sentinel-2 satellite imagery collected between 2015 and 2022. Furthermore, two models of RF-GA and RF-PSO were utilized to create multi-hazard susceptibility, which were evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC). The RF-GA algorithm achieved 91.1% accuracy for flood hazards, 83.8% for wildfires, and 99.1% for landslide hazards. In contrast, utilizing RF-PSO resulted in a 95.9% accuracy for land subsidence hazards. The combined RF-GA algorithm demonstrated superior accuracy to individual RF modeling techniques. Furthermore, eastern regions are more prone to floods and land subsidence, whereas western areas face more significant risks from landslides and wildfires. Additionally, floods and land subsidence exhibit a considerable correlation, impacting each other’s occurrence, while wildfires and landslides demonstrate interacting dynamics, influencing each other’s likelihood of occurrence. © The Author(s) 2025.
-
Floods are one of the most prevalent natural disasters, and advancements in geospatial technologies have revolutionized flood management, particularly the use of Digital Elevation Models (DEMs) in hydrological modelling. However, a comprehensive analysis DEMs integration in flood risk management is lacking. This study addresses this gap through a thorough Systematic Literature Review focusing on the combined application of DEMs and hydrological models in flood mitigation and risk management. The SLR scrutinized 21 articles, revealing eight key themes: DEM data sources and characteristics, DEM integration with hydrological models, flood hazard mapping applications, terrain impact assessment, model performance evaluation, machine learning in flood management, ecosystem services and resilience, and policy and governance implications. These findings emphasize the importance of precise DEM selection and correction for successful flood modelling, highlighting Advanced Land Observing Satellite as the most effective freely available DEM for use with the HEC-RAS unsteady flood model. This integration significantly enhances flood mitigation efforts and strengthens management strategies. Finally, this study underscores the pivotal role of DEM integration in crafting effective flood mitigation strategies, especially in addressing climate change challenges and bolstering community and ecosystem resilience. © 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
-
Floods are some of the most dangerous and most frequent natural disasters occurring in the northern region of Iran. Flooding in this area frequently leads to major urban, financial, anthropogenic, and environmental impacts. Therefore, the development of flood susceptibility maps used to identify flood zones in the catchment is necessary for improved flood management and decision making. The main objective of this study was to evaluate the performance of an Evidential Belief Function (EBF) model, both as an individual model and in combination with Logistic Regression (LR) methods, in preparing flood susceptibility maps for the Haraz Catchment in the Mazandaran Province, Iran. The spatial database created consisted of a flood inventory, altitude, slope angle, plan curvature, Topographic Wetness Index (TWI), Stream Power Index (SPI), distance from river, rainfall, geology, land use, and Normalized Difference Vegetation Index (NDVI) for the region. After obtaining the required information from various sources, 151 of 211 recorded flooding points were used for model training and preparation of the flood susceptibility maps. For validation, the results of the models were compared to the 60 remaining flooding points. The Receiver Operating Characteristic (ROC) curve was drawn, and the Area Under the Curve (AUC) was calculated to obtain the accuracy of the flood susceptibility maps prepared through success rates (using training data) and prediction rates (using validation data). The AUC results indicated that the EBF, EBF from LR, EBF-LR (enter), and EBF-LR (stepwise) success rates were 94.61%, 67.94%, 86.45%, and 56.31%, respectively, and the prediction rates were 94.55%, 66.41%, 83.19%, and 52.98%, respectively. The results showed that the EBF model had the highest accuracy in predicting flood susceptibility within the catchment, in which 15% of the total areas were located in high and very high susceptibility classes, and 62% were located in low and very low susceptibility classes. These results can be used for the planning and management of areas vulnerable to floods in order to prevent flood-induced damage; the results may also be useful for natural disaster assessment.