Votre recherche
Résultats 2 ressources
-
A physiographical space‐based kriging method is proposed for regional flood frequency estimation. The methodology relies on the construction of a continuous physiographical space using physiographical and meteorological characteristics of gauging stations and the use of multivariate analysis techniques. Two multivariate analysis methods were tested: canonical correlation analysis (CCA) and principal components analysis. Ordinary kriging, a geostatistical technique, was then used to interpolate flow quantiles through the physiographical space. Data from 151 gauging stations across the southern part of the province of Quebec, Canada, were used to illustrate this approach. In order to evaluate the performance of the proposed method, two validation techniques, cross validation and split‐sample validation, were applied to estimate flood quantiles corresponding to the 10, 50, and 100 year return periods. Results of the proposed method were compared to those produced by a traditional regional estimation method using the canonical correlation analysis. The proposed method yielded satisfactory results. It allowed, for instance, for estimating the 10 year return period specific flow with a coefficient of determination of up to 0.78. However, this performance decreases with the increase in the quantile return period. Results also showed that the proposed method works better when the physiographical space is defined using canonical correlation analysis. It is shown that kriging in the CCA physiographical space yields results as precise as the traditional estimation method, with a fraction of the effort and the computation time.
-
This study provides a multi-site hybrid statistical downscaling procedure combining regression-based and stochastic weather generation approaches for multisite simulation of daily precipitation. In the hybrid model, the multivariate multiple linear regression (MMLR) is employed for simultaneous downscaling of deterministic series of daily precipitation occurrence and amount using large-scale reanalysis predictors over nine different observed stations in southern Québec (Canada). The multivariate normal distribution, the first-order Markov chain model, and the probability distribution mapping technique are employed for reproducing temporal variability and spatial dependency on the multisite observations of precipitation series. The regression-based MMLR model explained 16 % ~ 22 % of total variance in daily precipitation occurrence series and 13 % ~ 25 % of total variance in daily precipitation amount series of the nine observation sites. Moreover, it constantly over-represented the spatial dependency of daily precipitation occurrence and amount. In generating daily precipitation, the hybrid model showed good temporal reproduction ability for number of wet days, cross-site correlation, and probabilities of consecutive wet days, and maximum 3-days precipitation total amount for all observation sites. However, the reproducing ability of the hybrid model for spatio-temporal variations can be improved, i.e. to further increase the explained variance of the observed precipitation series, as for example by using regional-scale predictors in the MMLR model. However, in all downscaling precipitation results, the hybrid model benefits from the stochastic weather generator procedure with respect to the single use of deterministic component in the MMLR model.