Votre recherche
Résultats 2 ressources
-
Abstract Topo‐bathymetric LiDAR (TBL) can provide a continuous digital elevation model (DEM) for terrestrial and submerged portions of rivers. This very high horizontal spatial resolution and high vertical accuracy data can be promising for flood plain mapping using hydrodynamic models. Despite the increasing number of papers regarding the use of TBL in fluvial environments, its usefulness for flood mapping remains to be demonstrated. This review of real‐world experiments focusses on three research questions related to the relevance of TBL in hydrodynamic modelling for flood mapping at local and regional scales: (i) Is the accuracy of TBL sufficient? (ii) What environmental and technical conditions can optimise the quality of acquisition? (iii) Is it possible to predict which rivers would be good candidates for TBL acquisition? With a root mean square error (RMSE) of 0.16 m, results from real‐world experiments confirm that TBL provides the required vertical accuracy for hydrodynamic modelling. Our review highlighted that environmental conditions, such as turbidity, overhanging vegetation or riverbed morphology, may prove to be limiting factors in the signal's capacity to reach the riverbed. A few avenues have been identified for considering whether TBL acquisition would be appropriate for a specific river. Thresholds should be determined using geometric or morphological criteria, such as rivers with steep slopes, steep riverbanks, and rivers too narrow or with complex morphologies, to avoid compromising the quality or the extent of the coverage. Based on this review, it appears that TBL acquisition conditions for hydrodynamic modelling for flood mapping should optimise the signal's ability to reach the riverbed. However, further research is needed to determine the percentage of coverage required for the use of TBL as a source of bathymetry in a hydrodynamic model, and whether specific river sections must be covered to ensure model performance for flood mapping.
-
The identification of bedforms has an important role in the study of seafloor morphology. The presence of these dynamic structures on the seafloor represents a hazard for navigation. They also influence the hydrodynamic simulation models used in the context, for example, of coastal flooding. Generally, multiBeam EchoSounders (MBES) are used to survey these bedforms. Unfortunately, the coverage of the MBES is limited to small areas per survey. Therefore, the analysis of large areas of interest (like navigation channels) requires the integration of different datasets acquired over overlapping areas at different times. The presence of spatial and temporal inconsistencies between these datasets may significantly affect the study of bedforms, which are subject to many natural processes (e.g. tides; flow). This paper proposes a novel approach to integrate multisource bathymetric datasets to study bedforms. The proposed approach is based on consolidating multisource datasets and applying the Empirical Bayesian Kriging interpolation for the creation of a multisource Digital Bathymetric Model (DBM). It has been designed to be adapted for estuarine areas with a high dynamism of the seafloor, characteristic of the fluvio-marine regime of the Estuary of the Saint-Lawrence River. This area is distinguished by a high tidal cycle and the presence of fields of dunes. The study involves MBES data that was acquired daily over a field of dunes in this area over the span of four days for the purpose of monitoring the morphology and migration of dunes. The proposed approach performs well with a resulting surface with a reduced error relative to the original data compared to existing approaches and the conservation of the dune shape through the integration of the data sets despite the highly dynamic fluvio-marine environments.