Votre recherche
Résultats 2 ressources
-
Extreme rainfall intensity–duration–frequency (IDF) relations have been commonly used for estimating the design storm for the design of various urban water infrastructures. In recent years, climate change has been recognized as having a profound impact on the hydrologic cycle. Hence, the derivation of IDF relations in the context of a changing climate has been recognized as one of the most challenging tasks in current engineering practice. The main challenge is how to establish the linkages between the climate projections given by climate models at the global or regional scales and the observed extreme rainfalls at a local site of interest. Therefore, our overall objective is to introduce a new statistical modeling approach to linking global or regional climate predictors to the observed daily and sub-daily rainfall extremes at a given location. Illustrative applications using climate simulations from 21 different global climate models and extreme rainfall data available from rain gauge networks located across Canada are presented to indicate the feasibility, accuracy, and robustness of the proposed modeling approach for assessing the climate change impact on IDF relations.
-
Abstract The estimation of the Intensity–Duration–Frequency (IDF) relation is often necessary for the planning and design of various hydraulic structures and design storms. It has been an increasingly greater challenge due to climate change conditions. This paper therefore proposes an integrated extreme rainfall modeling software package (SDExtreme) for constructing the IDF relations at a local site in the context of climate change. The proposed tool is based on a temporal downscaling method to describe the relationships between daily and sub-daily extreme precipitation using the scale-invariance General Extreme Value (GEV) distribution. In addition, SDExtreme provides a modified bootstrap technique to determine confidence intervals (CIs) of the estimated IDF curves for current and the future climate conditions. The feasibility and accuracy of SDExtreme were assessed using rainfall data available from the selected rain gauge stations in Quebec and Ontario provinces (Canada) and climate simulations under three different climate change scenarios provided by the Canadian Earth System Model (CanESM2) and the Canadian Regional Climate Model (CanRCM4).