Votre recherche
Résultats 2 ressources
-
A full 3D numerical model is used for studying tidal asymmetry, estuarine circulation, and saline intrusion in the Gironde estuary. The model is calibrated and verified using the data measured during two field surveys in the Gironde estuary. Harmonic analysis of numerical results is proposed to understand how the superposition of M2, M4 and M6 components generate a complex estuarine circulation and salinity intrusion in the Gironde estuary. The numerical results show that the M6 component plays a significant role as important as the M4 one in modifying the nature of tidal asymmetry, especially in the Gironde upper estuary. In this case, the use of the phase lag between M2 and M4, neglecting M6, to predict the tidal asymmetry nature could produce errors. The effect of asymmetrical tides on saline intrusion and residual circulation is specifically discussed here.
-
A three-dimensional large eddy simulation model is used to simulate the turbulent flow dynamics around a circular pier in live-bed and clear-water scour conditions. The Navier–Stokes equations are transformed into a σ-coordinate system and solved using a second-order unstructured triangular finite-volume method. We simulate the bed evolution by solving the Exner-Polya equation assisted by a sand-slide model as a correction method. The bedload transport rate is based on the model of Engelund and Fredsœ. The model was validated for live-bed conditions in a wide channel and clear-water conditions in a narrow channel against the experimental data found in the literature. The in-house model NSMP3D can successfully produce both the live-bed and clear-water scouring throughout a stable long-term simulation. The flow model was used to study the effects of the blockage ratio in the flow near the pier in clear-water conditions, particularly the contraction effect at the zone where the scour hole starts to form. The scour depth in the clear water simulations is generally deeper than the live-bed simulations. In clear-water, the results show that the present model is able to qualitatively and quantitatively capture the hydrodynamic and morphodynamic processes near the bed. In comparison to the wide channel situation, the simulations indicate that the scour rate is faster in the narrow channel case.