Votre recherche
Résultats 6 ressources
-
Abstract Accurately modeling the interactions between inland water bodies and the atmosphere in meteorological and climate models is crucial, given the marked differences with surrounding landmasses. Modeling surface heat fluxes remains a challenge because direct observations available for validation are rare, especially at high latitudes. This study presents a detailed evaluation of the Canadian Small Lake Model (CSLM), a one-dimensional mixed-layer dynamic lake model, in reproducing the surface energy budget and the thermal stratification of a subarctic reservoir in eastern Canada. The analysis is supported by multiyear direct observations of turbulent heat fluxes collected on and around the 85-km 2 Romaine-2 hydropower reservoir (50.7°N, 63.2°W) by two flux towers: one operating year-round on the shore and one on a raft during ice-free conditions. The CSLM, which simulates the thermal regime of the water body including ice formation and snow physics, is run in offline mode and forced by local weather observations from 25 June 2018 to 8 June 2021. Comparisons between observations and simulations confirm that CSLM can reasonably reproduce the turbulent heat fluxes and the temperature behavior of the reservoir, despite the one-dimensional nature of the model that cannot account for energy inputs and outputs associated with reservoir operations. The best performance is achieved during the first few months after the ice break-up (mean error = −0.3 and −2.7 W m −2 for latent and sensible heat fluxes, respectively). The model overreacts to strong wind events, leading to subsequent poor estimates of water temperature and eventually to an early freeze-up. The model overestimated the measured annual evaporation corrected for the lack of energy balance closure by 5% and 16% in 2019 and 2020. Significance Statement Freshwater bodies impact the regional climate through energy and water exchanges with the atmosphere. It is challenging to model surface energy fluxes over a northern lake due to the succession of stratification and mixing periods over a year. This study focuses on the interactions between the atmosphere of an irregular shaped northern hydropower reservoir. Direct measurements of turbulent fluxes using an eddy covariance system allowed the model assessment. Turbulent fluxes were successfully predicted during the open water period. Comparison between observed and modeled time series showed a good agreement; however, the model overreacted to high wind episodes. Biases mostly occur during freeze-up and breakup, stressing the importance of a good representation of the ice cover processes.
-
Abstract. In the boreal forest of eastern Canada, winter temperatures are projected to increase substantially by 2100. This region is also expected to receive less solid precipitation, resulting in a reduction in snow cover thickness and duration. These changes are likely to affect hydrological processes such as snowmelt, the soil thermal regime, and snow metamorphism. The exact impact of future changes is difficult to pinpoint in the boreal forest, due to its complex structure and the fact that snow dynamics under the canopy are very different from those in the gaps. In this study, we assess the influence of a low-snow and warm winter on snowmelt dynamics, soil freezing, snowpack properties, and spring streamflow in a humid and discontinuous boreal catchment of eastern Canada (47.29° N, 71.17° W; ≈ 850 m a.m.s.l.) based on observations and SNOWPACK simulations. We monitored the soil and snow thermal regimes and sampled physical properties of the snowpack under the canopy and in two forest gaps during an exceptionally low-snow and warm winter, projected to occur more frequently in the future, and during a winter with conditions close to normal. We observe that snowmelt was earlier but slower, top soil layers were cooler, and gradient metamorphism was enhanced during the low-snow and warm winter. However, we observe that snowmelt duration increased in forest gaps, that soil freezing was enhanced only under the canopy, and that snow permeability increased more strongly under the canopy than in either gap. Our results highlight that snow accumulation and melt dynamics are controlled by meteorological conditions, soil freezing is controlled by forest structure, and snow properties are controlled by both weather forcing and canopy discontinuity. Overall, observations and simulations suggest that the exceptionally low spring streamflow in the winter of 2020–2120 was mainly driven by low snow accumulation, slow snowmelt, and low precipitation in April and May rather than enhanced percolation through the snowpack and soil freezing.
-
At high latitudes, lake-atmosphere interactions are disrupted for several months of the year by the presence of an ice cover. By isolating the water column from the atmosphere, ice, typically topped by snow, drastically alters albedo, surface roughness, and heat exchanges relative to the open water period, with major climatic, ecological, and hydrological implications. Lake models used to simulate the appearance and disappearance of the ice cover have rarely been validated with detailed in situ observations of snow and ice. In this study, we investigate the ability of the physically-based 1D Canadian Small Lake Model (CSLM) to simulate the freeze-up, ice-cover growth, and breakup of a small boreal lake. The model, driven offline by local weather observations, is run on Lake Piché, 0.15 km 2 and 4 m deep (47.32°N; 71.15°W) from 25 October 2019 to 20 July 2021, and compared to observations of the temperature profile and ice and snow cover properties. Our results show that the CSLM is able to reproduce the total ice thickness (average error of 15 cm) but not the ice type-specific thickness, underestimating clear ice and overestimating snow ice. CSLM manages to reproduce snow depth (errors less than 10 cm). However, it has an average cold bias of 2°C and an underestimation of average snow density of 34 kg m −3 . Observed and model freeze-up and break-up dates are very similar, as the model is able to predict the longevity of the ice cover to within 2 weeks. CSLM successfully reproduces seasonal stratification, the mixed layer depth, and surface water temperatures, while it shows discrepancies in simulating bottom waters especially during the open water period.
-
Abstract The hydrological processes of cascading hydroelectric reservoirs differ from those of lakes, due to the importance of the inflows and outflows that vary with energy demand. These heat and water advection terms are rarely considered in water body energy balance analyses even though reservoirs are common man-made structures, especially in North America, and thus may affect the regional climate. This study provides a comprehensive assessment of the water and energy balance of the 85-km 2 Romaine-2 northern reservoir (50.69°N, 63.24°W), mean depth of 44 m, highlighting the significant contribution of the advection heat fluxes. The water balance input was primarily controlled by upstream (turbine) inflows (77.6%), while lateral (natural) inflows and direct precipitation represented 21.2% and 1.2%, respectively. As for the reservoir’s heat budget, the net advection of heat accounted on average for 25.0% of the input, of which net radiation was the largest component (73.3%). After accounting for the absence of energy balance closure, latent heat and sensible heat fluxes represented 73.2% and 25.1% of total energy output from the reservoir, respectively. The thermal regime was influenced by the hydrological flow conditions, which were regulated by reservoir management. This played a major role in the evolution of the thermocline and the temperature of the epilimnion, and ultimately, in the dynamics of the turbulent heat fluxes. This study suggests that the heat advection term represents a large fraction of the heat budget of northern reservoirs and should be properly considered.