Votre recherche
Résultats 3 ressources
-
In recent years, geospatial data (e.g. remote sensing imagery), and other relevant ancillary datasets (e.g. land use land cover, climate conditions) have been utilized through sophisticated algorithms to produce global population datasets. With a handful of such datasets, their performances and skill in flood exposure assessment have not been explored. This study proposes a comprehensive framework to understand the dynamics and differences in population flood exposure over Canada by employing four global population datasets alongside the census data from Statistics Canada as the reference. The flood exposure is quantified based on a set of floodplain maps (for 2015, 1 in 100-yr and 1 in 200-yr event) for Canada derived from the CaMa-Flood global flood model. To obtain further insights at the regional level, the methodology is implemented over six flood-prone River Basins in Canada. We find that about 9% (3.31 million) and 11% (3.90 million) of the Canadian population resides within 1 in 100-yr and 1 in 200-yr floodplains. We notice an excellent performance of WorldPop, and LandScan in most of the cases, which is unaffected by the representation of flood hazard, while Global Human Settlement and Gridded Population of the World showed large deviations. At last, we determined the long-term dynamics of population flood exposure and vulnerability from 2006 to 2019. Through this analysis, we also identify the regions that contain a significantly larger population exposed to floods. The relevant conclusions derived from the study highlight the need for careful selection of population datasets for preventing further amplification of uncertainties in flood risk. We recommend a detailed assessment of the severely exposed regions by including precise ground-level information. The results derived from this study may be useful not only for flood risk management but also contribute to understanding other disaster impacts on human-environment interrelationships. • Five population datasets are considered for quantifying flood exposure over Canada. • WorldPop and LandScan provide the closest estimates when compared with census data. • Skill of population datasets is tested over six flood-prone River Basins of Canada. • Long-term changes in degree of exposure is characterized at census-division level. • Highly exposed divisions are identified for ensuring detailed flood-risk assessment
-
Abstract It is undeniable that coastal regions worldwide are facing unprecedented damages from catastrophic floods attributable to storm-tide (tidal) and extreme rainfall (pluvial). For flood-risk assessment, although recognizing compound impact of these drivers is a conventional practice, the marginal/individual impacts cannot be overlooked. In this letter, we propose a new measure, Tide-Rainfall Flood Quotient (TRFQ), to quantify the driver-specific flood potential of a coastal region arising from storm-tide or rainfall. A set of inundation and hazard maps are derived through a series of numerical and hydrodynamic flood model simulations comprising of design rainfall and design storm-tide. These experiments are demonstrated on three different geographically diverse flood-affected coastal regions in India. The new measure throws light on existing knowledge gaps on the propensity of coastal flooding induced by the marginal/individual contribution of storm-tide and rainfall. It shall prove useful in rationalizing long-term flood management strategies customizable for storm-tide and pluvial dominated global coastal regions.